首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
In this study, the application of temperature‐based replica‐exchange (T‐ReX) simulations for structure refinement of decoys taken from the I‐TASSER dataset was examined. A set of eight nonredundant proteins was investigated using self‐guided Langevin dynamics (SGLD) with a generalized Born implicit solvent model to sample conformational space. For two of the protein test cases, a comparison of the SGLD/T‐ReX method with that of a hybrid explicit/implicit solvent molecular dynamics T‐ReX simulation model is provided. Additionally, the effect of side‐chain placement among the starting decoy structures, using alternative rotamer conformations taken from the SCWRL4 modeling program, was investigated. The simulation results showed that, despite having near‐native backbone conformations among the starting decoys, the determinant of their refinement is side‐chain packing to a level that satisfies a minimum threshold of native contacts to allow efficient excursions toward the downhill refinement regime on the energy landscape. By repacking using SCWRL4 and by applying the RWplus statistical potential for structure identification, the SGLD/T‐ReX simulations achieved refinement to an average of 38% increase in the number of native contacts relative to the original I‐TASSER decoy sets and a 25% reduction in values of Cα root‐mean‐square deviation. The hybrid model succeeded in obtaining a sharper funnel to low‐energy states for a modeled target than the implicit solvent SGLD model; yet, structure identification remained roughly the same. Without meeting a threshold of near‐native packing of side chains, the T‐ReX simulations degrade the accuracy of the decoys, and subsequently, refinement becomes tantamount to the protein folding problem. Proteins 2013. 2012 Published by Wiley Periodicals, Inc.  相似文献   

3.
Protein structure refinement by optimization   总被引:1,自引:0,他引:1       下载免费PDF全文
Martin Carlsen  Peter Røgen 《Proteins》2015,83(9):1616-1624
Knowledge‐based protein potentials are simplified potentials designed to improve the quality of protein models, which is important as more accurate models are more useful for biological and pharmaceutical studies. Consequently, knowledge‐based potentials often are designed to be efficient in ordering a given set of deformed structures denoted decoys according to how close they are to the relevant native protein structure. This, however, does not necessarily imply that energy minimization of this potential will bring the decoys closer to the native structure. In this study, we introduce an iterative strategy to improve the convergence of decoy structures. It works by adding energy optimized decoys to the pool of decoys used to construct the next and improved knowledge‐based potential. We demonstrate that this strategy results in significantly improved decoy convergence on Titan high resolution decoys and refinement targets from Critical Assessment of protein Structure Prediction competitions. Our potential is formulated in Cartesian coordinates and has a fixed backbone potential to restricts motions to be close to those of a dihedral model, a fixed hydrogen‐bonding potential and a variable coarse grained carbon alpha potential consisting of a pair potential and a novel solvent potential that are b‐spline based as we use explicit gradient and Hessian for efficient energy optimization. Proteins 2015; 83:1616–1624. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Li H 《Proteins》2006,64(4):985-991
A quantitative two-parameter model is developed to describe local energy minima distribution. On a conformational space measured by least-square-fitting root-mean-squared distance (RMSD), the number of local minima in a r RMSD region is proposed to be proportional to exp(-1/r). As part of the model derivations, the minimum RMSD of decoys from the largest cluster, the number of decoys in the largest cluster, and the RMSD distribution of the decoys have inner connections with each other. The model is successfully verified on a 49 helix-packing decoy set and a 30 loop-prediction decoy set, as well as both knowledge-based potential (DFIRE) and physical force-fields (OPLS and CHARMM). One of the model's applications is predicting behaviors of a large amount of decoys (e.g., minimum RMSD of 40,000 decoys) by generating only a small number of decoys (e.g., 500). It may be applied to structure predictions guided by any Lennard-Jones-like potential functions and can be extended to other sampling methods guided by simple energy terms.  相似文献   

5.
Loose C  Klepeis JL  Floudas CA 《Proteins》2004,54(2):303-314
A new force field for pairwise residue interactions as a function of C(alpha) to C(alpha) distances is presented. The force field was developed through the solution of a linear programming formulation with large sets of constraints. The constraints are based on the construction of >80,000 low-energy decoys for a set of proteins and requiring the decoy energies for each protein system to be higher than the native conformation of that particular protein. The generation of a robust force field was facilitated by the use of a novel decoy generation process, which involved the rational selection of proteins to add to the training set and included a significant energy minimization of the decoys. The force field was tested on a large set of decoys for various proteins not included in the training set and shown to perform well compared with a leading force field in identifying the native conformation for these proteins.  相似文献   

6.
Guang Hu  Bairong Shen 《Proteins》2014,82(4):556-564
An accurate score function for detecting the most native‐like models among a huge number of decoy sets is essential to the protein structure prediction. In this work, we developed a novel integrated score function (SVR_CAF) to discriminate native structures from decoys, as well as to rank near‐native structures and select best decoys when native structures are absent. SVR_CAF is a machine learning score, which incorporates the contact energy based score ( C E_score), amino acid network based score ( A AN_score), and the fast Fourier transform based score ( F FT_score). The score function was evaluated with four decoy sets for its discriminative ability and it shows higher overall performance than the state‐of‐the‐art score functions. Proteins 2014; 82:556–564. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
We present a new four‐body knowledge‐based potential for recognizing the native state of proteins from their misfolded states. This potential was extracted from a large set of protein structures determined by X‐ray crystallography using BetaMol, a software based on the recent theory of the beta‐complex (β‐complex) and quasi‐triangulation of the Voronoi diagram of spheres. This geometric construct reflects the size difference among atoms in their full Euclidean metric; property not accounted for in a typical 3D Delaunay triangulation. The ability of this potential to identify the native conformation over a large set of decoys was evaluated. Experiments show that this potential outperforms a potential constructed with a classical Delaunay triangulation in decoy discrimination tests. The addition of a statistical hydrogen bond potential to our four‐body potential allows a significant improvement in the decoy discrimination, in such a way that we are able to predict successfully the native structure in 90% of cases. Proteins 2013; 81:1420–1433. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Biophysical forcefields have contributed less than originally anticipated to recent progress in protein structure prediction. Here, we have investigated the selectivity of a recently developed all‐atom free‐energy forcefield for protein structure prediction and quality assessment (QA). Using a heuristic method, but excluding homology, we generated decoy‐sets for all targets of the CASP7 protein structure prediction assessment with <150 amino acids. The decoys in each set were then ranked by energy in short relaxation simulations and the best low‐energy cluster was submitted as a prediction. For four of nine template‐free targets, this approach generated high‐ranking predictions within the top 10 models submitted in CASP7 for the respective targets. For these targets, our de‐novo predictions had an average GDT_S score of 42.81, significantly above the average of all groups. The refinement protocol has difficulty for oligomeric targets and when no near‐native decoys are generated in the decoy library. For targets with high‐quality decoy sets the refinement approach was highly selective. Motivated by this observation, we rescored all server submissions up to 200 amino acids using a similar refinement protocol, but using no clustering, in a QA exercise. We found an excellent correlation between the best server models and those with the lowest energy in the forcefield. The free‐energy refinement protocol may thus be an efficient tool for relative QA and protein structure prediction. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Liang S  Meroueh SO  Wang G  Qiu C  Zhou Y 《Proteins》2009,75(2):397-403
The identification of near native protein-protein complexes among a set of decoys remains highly challenging. A strategy for improving the success rate of near native detection is to enrich near native docking decoys in a small number of top ranked decoys. Recently, we found that a combination of three scoring functions (energy, conservation, and interface propensity) can predict the location of binding interface regions with reasonable accuracy. Here, these three scoring functions are modified and combined into a consensus scoring function called ENDES for enriching near native docking decoys. We found that all individual scores result in enrichment for the majority of 28 targets in ZDOCK2.3 decoy set and the 22 targets in Benchmark 2.0. Among the three scores, the interface propensity score yields the highest enrichment in both sets of protein complexes. When these scores are combined into the ENDES consensus score, a significant increase in enrichment of near-native structures is found. For example, when 2000 dock decoys are reduced to 200 decoys by ENDES, the fraction of near-native structures in docking decoys increases by a factor of about six in average. ENDES was implemented into a computer program that is available for download at http://sparks.informatics.iupui.edu.  相似文献   

10.
We present a knowledge‐based function to score protein decoys based on their similarity to native structure. A set of features is constructed to describe the structure and sequence of the entire protein chain. Furthermore, a qualitative relationship is established between the calculated features and the underlying electromagnetic interaction that dominates this scale. The features we use are associated with residue–residue distances, residue–solvent distances, pairwise knowledge‐based potentials and a four‐body potential. In addition, we introduce a new target to be predicted, the fitness score, which measures the similarity of a model to the native structure. This new approach enables us to obtain information both from decoys and from native structures. It is also devoid of previous problems associated with knowledge‐based potentials. These features were obtained for a large set of native and decoy structures and a back‐propagating neural network was trained to predict the fitness score. Overall this new scoring potential proved to be superior to the knowledge‐based scoring functions used as its inputs. In particular, in the latest CASP (CASP10) experiment our method was ranked third for all targets, and second for freely modeled hard targets among about 200 groups for top model prediction. Ours was the only method ranked in the top three for all targets and for hard targets. This shows that initial results from the novel approach are able to capture details that were missed by a broad spectrum of protein structure prediction approaches. Source codes and executable from this work are freely available at http://mathmed.org /#Software and http://mamiris.com/ . Proteins 2014; 82:752–759. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Akio Kitao 《Proteins》2013,81(6):1005-1016
We propose a fast clustering and reranking method, CyClus, for protein–protein docking decoys. This method enables comprehensive clustering of whole decoys generated by rigid‐body docking using cylindrical approximation of the protein–proteininterface and hierarchical clustering procedures. We demonstrate the clustering and reranking of 54,000 decoy structures generated by ZDOCK for each complex within a few minutes. After parameter tuning for the test set in ZDOCK benchmark 2.0 with the ZDOCK and ZRANK scoring functions, blind tests for the incremental data in ZDOCK benchmark 3.0 and 4.0 were conducted. CyClus successfully generated smaller subsets of decoys containing near‐native decoys. For example, the number of decoys required to create subsets containing near‐native decoys with 80% probability was reduced from 22% to 50% of the number required in the original ZDOCK. Although specific ZDOCK and ZRANK results were demonstrated, the CyClus algorithm was designed to be more general and can be applied to a wide range of decoys and scoring functions by adjusting just two parameters, p and T. CyClus results were also compared to those from ClusPro. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The accuracy of model selection from decoy ensembles of protein loop conformations was explored by comparing the performance of the Samudrala-Moult all-atom statistical potential (RAPDF) and the AMBER molecular mechanics force field, including the Generalized Born/surface area solvation model. Large ensembles of consistent loop conformations, represented at atomic detail with idealized geometry, were generated for a large test set of protein loops of 2 to 12 residues long by a novel ab initio method called RAPPER that relies on fine-grained residue-specific phi/psi propensity tables for conformational sampling. Ranking the conformers on the basis of RAPDF scores resulted in selected conformers that had an average global, non-superimposed RMSD for all heavy mainchain atoms ranging from 1.2 A for 4-mers to 2.9 A for 8-mers to 6.2 A for 12-mers. After filtering on the basis of anchor geometry and RAPDF scores, ranking by energy minimization of the AMBER/GBSA potential energy function selected conformers that had global RMSD values of 0.5 A for 4-mers, 2.3 A for 8-mers, and 5.0 A for 12-mers. Minimized fragments had, on average, consistently lower RMSD values (by 0.1 A) than their initial conformations. The importance of the Generalized Born solvation energy term is reflected by the observation that the average RMSD accuracy for all loop lengths was worse when this term is omitted. There are, however, still many cases where the AMBER gas-phase minimization selected conformers of lower RMSD than the AMBER/GBSA minimization. The AMBER/GBSA energy function had better correlation with RMSD to native than the RAPDF. When the ensembles were supplemented with conformations extracted from experimental structures, a dramatic improvement in selection accuracy was observed at longer lengths (average RMSD of 1.3 A for 8-mers) when scoring with the AMBER/GBSA force field. This work provides the basis for a promising hybrid approach of ab initio and knowledge-based methods for loop modeling.  相似文献   

13.
Predicting the conformations of loops is a critical aspect of protein comparative (homology) modeling. Despite considerable advances in developing loop prediction algorithms, refining loops in homology models remains challenging. In this work, we use antibodies as a model system to investigate strategies for more robustly predicting loop conformations when the protein model contains errors in the conformations of side chains and protein backbone surrounding the loop in question. Specifically, our test system consists of partial models of antibodies in which the “scaffold” (i.e., the portion other than the complementarity determining region, CDR, loops) retains native backbone conformation, whereas the CDR loops are predicted using a combination of knowledge‐based modeling (H1, H2, L1, L2, and L3) and ab initio loop prediction (H3). H3 is the most variable of the CDRs. Using a previously published method, a test set of 10 shorter H3 loops (5–7 residues) are predicted to an average backbone (N? Cα? C? O) RMSD of 2.7 Å while 11 longer loops (8–9 residues) are predicted to 5.1 Å, thus recapitulating the difficulties in refining loops in models. By contrast, in control calculations predicting the same loops in crystal structures, the same method reconstructs the loops to an average of 0.5 and 1.4 Å for the shorter and longer loops, respectively. We modify the loop prediction method to improve the ability to sample near‐native loop conformations in the models, primarily by reducing the sensitivity of the sampling to the loop surroundings, and allowing the other CDR loops to optimize with the H3 loop. The new method improves the average accuracy significantly to 1.3 Å RMSD and 3.1 Å RMSD for the shorter and longer loops, respectively. Finally, we present results predicting 8–10 residue loops within complete comparative models of five nonantibody proteins. While anecdotal, these mixed, full‐model results suggest our approach is a promising step toward more accurately predicting loops in homology models. Furthermore, while significant challenges remain, our method is a potentially useful tool for predicting antibody structures based on a known Fv scaffold. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The prediction of protein–protein interactions based on independently obtained structural information for each interacting partner remains an important challenge in computational chemistry. Procedures where hypothetical interaction models (or decoys) are generated, then ranked using a biochemically relevant scoring function have been garnering interest as an avenue for addressing such challenges. The program PatchDock has been shown to produce reasonable decoys for modeling the association between pig alpha-amylase and the VH-domains of camelide antibody raised against it. We designed a biochemically relevant method by which PatchDock decoys could be ranked in order to separate near-native structures from false positives. Several thousand steps of energy minimization were used to simulate induced fit within the otherwise rigid decoys and to rank them. We applied a partial free energy function to rank each of the binding modes, improving discrimination between near-native structures and false positives. Sorting decoys according to strain energy increased the proportion of near-native decoys near the bottom of the ranked list. Additionally, we propose a novel method which utilizes regression analysis for the selection of minimization convergence criteria and provides approximation of the partial free energy function as the number of algorithmic steps approaches infinity.  相似文献   

15.
Zhu J  Zhu Q  Shi Y  Liu H 《Proteins》2003,52(4):598-608
One strategy for ab initio protein structure prediction is to generate a large number of possible structures (decoys) and select the most fitting ones based on a scoring or free energy function. The conformational space of a protein is huge, and chances are rare that any heuristically generated structure will directly fall in the neighborhood of the native structure. It is desirable that, instead of being thrown away, the unfitting decoy structures can provide insights into native structures so prediction can be made progressively. First, we demonstrate that a recently parameterized physics-based effective free energy function based on the GROMOS96 force field and a generalized Born/surface area solvent model is, as several other physics-based and knowledge-based models, capable of distinguishing native structures from decoy structures for a number of widely used decoy databases. Second, we observe a substantial increase in correlations of the effective free energies with the degree of similarity between the decoys and the native structure, if the similarity is measured by the content of native inter-residue contacts in a decoy structure rather than its root-mean-square deviation from the native structure. Finally, we investigate the possibility of predicting native contacts based on the frequency of occurrence of contacts in decoy structures. For most proteins contained in the decoy databases, a meaningful amount of native contacts can be predicted based on plain frequencies of occurrence at a relatively high level of accuracy. Relative to using plain frequencies, overwhelming improvements in sensitivity of the predictions are observed for the 4_state_reduced decoy sets by applying energy-dependent weighting of decoy structures in determining the frequency. There, approximately 80% native contacts can be predicted at an accuracy of approximately 80% using energy-weighted frequencies. The sensitivity of the plain frequency approach is much lower (20% to 40%). Such improvements are, however, not observed for the other decoy databases. The rationalization and implications of the results are discussed.  相似文献   

16.
Structure prediction and quality assessment are crucial steps in modeling native protein conformations. Statistical potentials are widely used in related algorithms, with different parametrizations typically developed for different contexts such as folding protein monomers or docking protein complexes. Here, we describe BACH‐SixthSense, a single residue‐based statistical potential that can be successfully employed in both contexts. BACH‐SixthSense shares the same approach as BACH, a knowledge‐based potential originally developed to score monomeric protein structures. A term that penalizes steric clashes as well as the distinction between polar and apolar sidechain‐sidechain contacts are crucial novel features of BACH‐SixthSense. The performance of BACH‐SixthSense in discriminating correctly the native structure among a competing set of decoys is significantly higher than other state‐of‐the‐art scoring functions, that were specifically trained for a single context, for both monomeric proteins (QMEAN, Rosetta, RF_CB_SRS_OD, benchmarked on CASP targets) and protein dimers (IRAD, Rosetta, PIE*PISA, HADDOCK, FireDock, benchmarked on 14 CAPRI targets). The performance of BACH‐SixthSense in recognizing near‐native docking poses within CAPRI decoy sets is good as well. Proteins 2015; 83:621–630. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
There are several knowledge-based energy functions that can distinguish the native fold from a pool of grossly misfolded decoys for a given sequence of amino acids. These decoys, which are typically generated by mounting, or “threading”, the sequence onto the backbones of unrelated protein structures, tend to be non-compact and quite different from the native structure: the root-mean-squared (RMS) deviations from the native are commonly in the range of 15 to 20 Å. Effective energy functions should also demonstrate a similar recognition capability when presented with compact decoys that depart only slightly in conformation from the correct structure (i.e. those with RMS deviations of ∼5 Å or less). Recently, we developed a simple yet powerful method for native fold recognition based on the tendency for native folds to form hydrophobic cores. Our energy measure, which we call the hydrophobic fitness score, is challenged to recognize the native fold from 2000 near-native structures generated for each of five small monomeric proteins. First, 1000 conformations for each protein were generated by molecular dynamics simulation at room temperature. The average RMS deviation of this set of 5000 was 1.5 Å. A total of 323 decoys had energies lower than native; however, none of these had RMS deviations greater than 2 Å. Another 1000 structures were generated for each at high temperature, in which a greater range of conformational space was explored (4.3 Å average RMS deviation). Out of this set, only seven decoys were misrecognized. The hydrophobic fitness energy of a conformation is strongly dependent upon the RMS deviation. On average our potential yields energy values which are lowest for the population of structures generated at room temperature, intermediate for those produced at high temperature and highest for those constructed by threading methods. In general, the lowest energy decoy conformations have backbones very close to native structure. The possible utility of our method for screening backbone candidates for the purpose of modelling by side-chain packing optimization is discussed.  相似文献   

18.
Protein decoy data sets provide a benchmark for testing scoring functions designed for fold recognition and protein homology modeling problems. It is commonly believed that statistical potentials based on reduced atomic models are better able to discriminate native-like from misfolded decoys than scoring functions based on more detailed molecular mechanics models. Recent benchmark tests on small data sets, however, suggest otherwise. In this work, we report the results of extensive decoy detection tests using an effective free energy function based on the OPLS all-atom (OPLS-AA) force field and the Surface Generalized Born (SGB) model for the solvent electrostatic effects. The OPLS-AA/SGB effective free energy is used as a scoring function to detect native protein folds among a total of 48,832 decoys for 32 different proteins from Park and Levitt's 4-state-reduced, Levitt's local-minima, Baker's ROSETTA all-atom, and Skolnick's decoy sets. Solvent electrostatic effects are included through the Surface Generalized Born (SGB) model. All structures are locally minimized without restraints. From an analysis of the individual energy components of the OPLS-AA/SGB energy function for the native and the best-ranked decoy, it is determined that a balance of the terms of the potential is responsible for the minimized energies that most successfully distinguish the native from the misfolded conformations. Different combinations of individual energy terms provide less discrimination than the total energy. The results are consistent with observations that all-atom molecular potentials coupled with intermediate level solvent dielectric models are competitive with knowledge-based potentials for decoy detection and protein modeling problems such as fold recognition and homology modeling.  相似文献   

19.
Knowledge-based potentials are energy functions derived from the analysis of databases of protein structures and sequences. They can be divided into two classes. Potentials from the first class are based on a direct conversion of the distributions of some geometric properties observed in native protein structures into energy values, while potentials from the second class are trained to mimic quantitatively the geometric differences between incorrectly folded models and native structures. In this paper, we focus on the relationship between energy and geometry when training the second class of knowledge-based potentials. We assume that the difference in energy between a decoy structure and the corresponding native structure is linearly related to the distance between the two structures. We trained two distance-based knowledge-based potentials accordingly, one based on all inter-residue distances (PPD), while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE). We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on intrinsic geometry (Q* and MT). The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information in an ensemble. The relevance of these results for the design of knowledge-based potentials is discussed.  相似文献   

20.
Deng H  Jia Y  Wei Y  Zhang Y 《Proteins》2012,80(9):2311-2322
Many statistical potentials were developed in last two decades for protein folding and protein structure recognition. The major difference of these potentials is on the selection of reference states to offset sampling bias. However, since these potentials used different databases and parameter cutoffs, it is difficult to judge what the best reference states are by examining the original programs. In this study, we aim to address this issue and evaluate the reference states by a unified database and programming environment. We constructed distance-specific atomic potentials using six widely-used reference states based on 1022 high-resolution protein structures, which are applied to rank modeling in six sets of structure decoys. The reference state on random-walk chain outperforms others in three decoy sets while those using ideal-gas, quasi-chemical approximation and averaging sample stand out in one set separately. Nevertheless, the performance of the potentials relies on the origin of decoy generations and no reference state can clearly outperform others in all decoy sets. Further analysis reveals that the statistical potentials have a contradiction between the universality and pertinence, and optimal reference states should be extracted based on specific application environments and decoy spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号