首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
3.
4.
5.
Bromodomain and extra-terminal family proteins recognize the acetylated histone code on chromatin and participate in downstream processes like DNA replication, modification, and repair. As part of epigenetic approaches, BRD2 and BRD4 were identified as putative targets, for the management of chronic diseases. We have recently reported the discovery of a new scaffold of the phenanthridinone-based inhibitor (L10) of the second bromodomain of BRD2 (BRD2-BD2). Here, we present the crystal structure of the BRD2-BD2, refined to 1.4 Å resolution, in complex with β-mercaptoethanol (a component of the protein buffer). The β-mercaptoethanol covalently links to C425 of BD2 in the acetyl-lysine binding pocket, to form a modified cysteine mercaptoethanol (CME). The CME modification significantly hinders the entry of ligands into the BD2 binding pocket, suggesting that β-mercaptoethanol should be removed during protein production process. Next, to confirm whether phenanthridionone scaffold is a new inhibitor family of BRD2-BD2, we have determined the crystal structure of BD2 in complex with 6(5H)-Phenanthridinone (a core moiety of L10), refined to 1.28 Å resolution. It confirmed that the phenanthridinone molecule, unambiguously, binds to BD2. Moreover, we performed molecular docking and molecular dynamic studies on selected phenanthridinone analogs. The predicted L10 analogs are stable with essential hydrophobic and hydrophilic interactions with BD2 during molecular dynamic simulations. We propose that the predicted phenanthridinone analogs may be potential molecules for inhibiting the BD2 function of acetylated histone recognition.  相似文献   

6.
7.
8.
9.
10.
11.
12.
As a member of the bromodomain and extraterminal domain (BET) family, BRD4 is considered as a potential target for cancer treatment. However, because of the highly conservation of its two homologous bromodomains (BD1/BD2), selective inhibition of each bromodomain remains a challenge. MS402 is a domain-selective inhibitor of BRD4-BD1 over BRD4-BD2 reported recently. Understanding the selectivity mechanism would be very useful for the further design of more potent BD1-selectivity inhibitors. Molecular dynamics simulation, adaptive biasing force and multiple-walker adaptive biasing force were performed to study the inhibition and domain-selective mechanism of MS402 toward BRD4-BD1 over BRD4-BD2 here. Results demonstrate BRD4-BD1 binds to MS402 with lower binding free energy than BRD4-BD2. Residues Gln85, Pro86, Asn140, and Ile146 are crucial for MS402's selectively binding to BRD4-BD1. MS402 needs to overcome more energy barrier to dissociate from BD1 than from BD2 pocket. These findings will be helpful for rational structural modification of existing inhibitors to increase their BD1-selectivity.  相似文献   

13.
14.
Shen W  Xu C  Huang W  Zhang J  Carlson JE  Tu X  Wu J  Shi Y 《Biochemistry》2007,46(8):2100-2110
Human brahma-related gene 1 (Brg1) is a core protein in human SWI/SNF chromatin-remodeling complex which regulates gene expression. Brg1 contains a bromodomain that has been shown to anchor the entire complex to promoter nucleosomes by interacting with histones that are acetylated at specific lysine residues. The Brg1 bromodomain belongs to an important subclass of the bromodomain family for which no structural information is known. Here we report the solution structure of the Brg1 bromodomain determined by NMR. The Brg1 bromodomain conserves the left-handed, four-helix bundle topology found in other bromodomain structures. However, the alphaZ helix of Brg1 bromodomain is about 4 residues shorter relative to previously published bromodomain structures. Using NMR perturbation studies, we demonstrate the Brg1 bromodomain binds acetyllysine in the context of histone tails, with no comparable affinity for unacetylated peptides. The estimated dissociation constants (KD) for acetylated histone peptides H4-AcK8 and H4-AcK12 are 4.0 and 3.6 mM, respectively. In this study the dominant substrate was H3-AcK14 (KD approximately 1.2 mM). Mutagenesis analysis reveals several residues important for the binding specificity. Using molecular dynamics simulations, we present a model of the Brg1 bromodomain in complex with H3-AcK14 and discuss the potential interactions which provide the selectivity of the Brg1 bromodomain for histone H3-AcK14.  相似文献   

15.
Heterochromatin at yeast telomeres and silent mating (HM) loci represses adjacent genes and is formed by the binding and spreading of silencing information regulators (SIR proteins) along histones. This involves the interaction between the C terminus of SIR3 and the N terminus of histone H4. Since H4 is hypoacetylated in heterochromatin we wished to determine whether acetylation is involved in regulating the contacts between SIR3 and H4. Binding of H4 peptide (residues 1-34) acetylated at lysines Lys-5, Lys-8, Lys-12, and Lys-16 to an immobilized SIR3 protein fragment (residues 510-970) was investigated using surface plasmon resonance. We find that acetylation of H4 lysines reduces binding (K(a)) of H4 to SIR3 in a cumulative manner so that the fully acetylated peptide binding is decreased approximately 50-fold relative to unacetylated peptide. Thus, by affecting SIR3-H4 binding, acetylation may regulate the formation of heterochromatin. These data help explain the hypoacetylated state of histone H4 in heterochromatin of eukaryotes.  相似文献   

16.
17.
Within the last decade, the Bromodomain and Extra-Terminal domain family (BET) of proteins have emerged as promising drug targets in diverse clinical indications including oncology, auto-immune disease, heart failure, and male contraception. The BET family consists of four isoforms (BRD2, BRD3, BRD4, and BRDT/BRDT6) which are distinguished by the presence of two tandem bromodomains (BD1 and BD2) that independently recognize acetylated-lysine (KAc) residues and appear to have distinct biological roles. BET BD1 and BD2 bromodomains differ at five positions near the substrate binding pocket: the variation in the ZA channel induces different water networks nearby. We designed a set of congeneric 2- and 3-heteroaryl substituted tetrahydroquinolines (THQ) to differentially engage bound waters in the ZA channel with the goal of achieving bromodomain selectivity. SJ830599 (9) showed modest, but consistent, selectivity for BRD2-BD2. Using isothermal titration calorimetry, we showed that the binding of all THQ analogs in our study to either of the two bromodomains was enthalpy driven. Remarkably, the binding of 9 to BRD2-BD2 was marked by negative entropy and was entirely driven by enthalpy, consistent with significant restriction of conformational flexibility and/or engagement with bound waters. Co-crystallography studies confirmed that 9 did indeed stabilize a water-mediated hydrogen bond network. Finally, we report that 9 retained cytotoxicity against several pediatric cancer cell lines with EC50 values comparable to BET inhibitor (BETi) clinical candidates.  相似文献   

18.
19.
20.
The coordination of chromatin remodeling with chromatin modification is a central topic in gene regulation. The yeast chromatin remodeling complex RSC bears multiple bromodomains, motifs for acetyl-lysine and histone tail interaction. Here, we identify and characterize Rsc4 and show that it bears tandem essential bromodomains. Conditional rsc4 bromodomain mutations were isolated, and were lethal in combination with gcn5Delta, whereas combinations with esa1 grew well. Replacements involving Lys14 of histone H3 (the main target of Gcn5), but not other H3 or H4 lysine residues, also conferred severe growth defects to rsc4 mutant strains. Importantly, wild-type Rsc4 bound an H3 tail peptide acetylated at Lys14, whereas a bromodomain mutant derivative did not. Loss of particular histone deacetylases suppressed rsc4 bromodomain mutations, suggesting that Rsc4 promotes gene activation. Furthermore, rsc4 mutants displayed defects in the activation of genes involved in nicotinic acid biosynthesis, cell wall integrity, and other pathways. Taken together, Rsc4 bears essential tandem bromodomains that rely on H3 Lys14 acetylation to assist RSC complex for gene activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号