首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M1-, M3-, and M5-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70 ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M1- and M5-acetylcholine receptors and the amplitude of these signals was larger at the M1-acetylcholine receptor. Concentration-response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M1-, M3- and M5-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation.  相似文献   

2.
Flp-InTM T-RExTM 293 cells expressing a wild type human M3 muscarinic acetylcholine receptor construct constitutively and able to express a receptor activated solely by synthetic ligand (RASSL) form of this receptor on demand maintained response to the muscarinic agonist carbachol but developed response to clozapine N-oxide only upon induction of the RASSL. The two constructs co-localized at the plasma membrane and generated strong ratiometric fluorescence resonance energy transfer (FRET) signals consistent with direct physical interactions. Increasing levels of induction of the FRET donor RASSL did not alter wild type receptor FRET-acceptor levels substantially. However, ratiometric FRET was modulated in a bell-shaped fashion with maximal levels of the donor resulting in decreased FRET. Carbachol, but not the antagonist atropine, significantly reduced the FRET signal. Cell surface homogeneous time-resolved FRET, based on SNAP-tag technology and employing wild type and RASSL forms of the human M3 receptor expressed stably in Flp-InTM TRExTM 293 cells, also identified cell surface dimeric/oligomeric complexes. Now, however, signals were enhanced by appropriate selective agonists. At the wild type receptor, large increases in FRET signal to carbachol and acetylcholine were concentration-dependent with EC50 values consistent with the relative affinities of the two ligands. These studies confirm the capacity of the human M3 muscarinic acetylcholine receptor to exist as dimeric/oligomeric complexes at the surface of cells and demonstrate that the organization of such complexes can be modified by ligand binding. However, conclusions as to the effect of ligands on such complexes may depend on the approach used.  相似文献   

3.
Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M2 muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M2 receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M2 receptor to enhanced green fluorescent protein-M2 receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 ± 0.019; n = 4, 0.202 ± 0.010; n = 6, 0.128 ± 0.006; n = 8, 0.093 ± 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20–0.24, identifying the M2 receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process.  相似文献   

4.
Allosteric modulators are an attractive approach to achieve receptor subtype-selective targeting of G protein-coupled receptors. Benzyl quinolone carboxylic acid (BQCA) is an unprecedented example of a highly selective positive allosteric modulator of the M1 muscarinic acetylcholine receptor (mAChR). However, despite favorable pharmacological characteristics of BQCA in vitro and in vivo, there is limited evidence of the impact of allosteric modulation on receptor regulatory mechanisms such as β-arrestin recruitment or receptor internalization and endocytic trafficking. In the present study we investigated the impact of BQCA on M1 mAChR regulation. We show that BQCA potentiates agonist-induced β-arrestin recruitment to M1 mAChRs. Using a bioluminescence resonance energy transfer approach to monitor intracellular trafficking of M1 mAChRs, we show that once internalized, M1 mAChRs traffic to early endosomes, recycling endosomes and late endosomes. We also show that BQCA potentiates agonist-induced subcellular trafficking. M1 mAChR internalization is both β-arrestin and G protein-dependent, with the third intracellular loop playing an important role in the dynamics of β-arrestin recruitment. As the global effect of receptor activation ultimately depends on the levels of receptor expression at the cell surface, these results illustrate the need to extend the characterization of novel allosteric modulators of G protein-coupled receptors to encapsulate the consequences of chronic exposure to this family of ligands.  相似文献   

5.

Background and Objective

Muscarinic acetylcholine receptors (mAChRs) are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M1 mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET).

Methods

Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M1 mAChR, respectively. The optimized FRET receptor construct (M1-cam5) was expressed stably in HEK293 cells.

Results

The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gαq/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M1 FRET (FEYFP/FECFP) that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine.

Conclusion

The M1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a valuable molecular reagent for pharmacological and structural investigations of M1 mAChR activation.  相似文献   

6.
The recently identified small molecule, 3-amino-5-chloro-6-methoxy-4-methylthieno[2,3-b]pyridine-2-carboxylic acid cyclopropylamide (LY2033298), is the first selective allosteric modulator of the muscarinic acetylcholine receptors (mAChRs) that mediates both receptor activation and positive modulation of the endogenous agonist, acetylcholine (ACh), via the same allosteric site on the M4 mAChR. We thus utilized this novel chemical tool, as well as ACh, the bitopic (orthosteric/allosteric) agonist, McN-A-343, and the clinically efficacious M1/M4 mAChR-preferring agonist, xanomeline, in conjunction with site-directed mutagenesis of four different regions of the M4 mAChR (extracellular loops 1, 2, and 3, and transmembrane domain 7), to identify regions that govern ligand-specific modes of binding, signaling, and allosteric modulation. In the first extracellular loop (E1), we identified Ile93 and Lys95 as key residues that specifically govern the signaling efficacy of LY2033298 and its binding cooperativity with ACh, whereas Phe186 in the E2 loop was identified as a key contributor to the binding affinity of the modulator for the allosteric site, and Asp432 in the E3 loop appears to be involved in the functional (activation) cooperativity between the modulator and the endogenous agonist. In contrast, the highly conserved transmembrane domain 7 residues, Tyr439 and Tyr443, were identified as contributing to a key activation switch utilized by all classes of agonists. These results provide new insights into the existence of multiple activation switches in G protein-coupled receptors (GPCRs), some of which can be selectively exploited by allosteric agonists, whereas others represent global activation mechanisms for all classes of ligand.  相似文献   

7.
Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein–coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M1-Rs and M3-Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the Gq protein cycle. In the presence of ACh, M1-R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M3-R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed “allosteric site” M3/M1-R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M3-Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects.  相似文献   

8.
Background information. The idea that GPCRs (G‐protein‐coupled receptors) may exist as homo‐ or hetero‐oligomers, although still controversial, is now widely accepted. Nevertheless, the functional roles of oligomerization are still unclear and gaining greater insight into the mechanisms underlying the dynamics of GPCR assembly and, in particular, assessing the effect of ligands on this process seems important. We chose to focus our present study on the effect of MT7 (muscarinic toxin 7), a highly selective allosteric peptide ligand, on the oligomerization state of the hM1 (human M1 muscarinic acetylcholine receptor subtype). Results. We analysed the hM1 oligomerization state in membrane preparations or in live cells and observed the effect of MT7 via four complementary techniques: native‐PAGE electrophoresis analysed by both Western blotting and autoradiography on solubilized membrane preparations of CHO‐M1 cells (Chinese‐hamster ovary cells expressing muscarinic M1 receptors); FRET (fluorescence resonance energy transfer) experiments on cells expressing differently tagged M1 receptors using either an acceptor photobleaching approach or a novel fluorescence emission anisotropy technique; and, finally, by BRET (bioluminescence resonance energy transfer) assays. Our results reveal that MT7 seems to protect the M1 receptor from the dissociating effect of the detergent and induces an increase in the FRET and BRET signals, highlighting its ability to affect the dimeric form of the receptor. Conclusions. Our results suggest that MT7 binds to a dimeric form of hM1 receptor, favouring the stability of this receptor state at the cellular level, probably by inducing some conformational rearrangements of the pre‐existing muscarinic receptor homodimers.  相似文献   

9.
The concept of “functional selectivity” or “biased signaling” suggests that a ligand can have distinct efficacies with regard to different signaling pathways. We have investigated the question of whether biased signaling may be related to distinct agonist-induced conformational changes in receptors using the β2-adrenergic receptor (β2AR) and its two endogenous ligands epinephrine and norepinephrine as a model system. Agonist-induced conformational changes were determined in a fluorescently tagged β2AR FRET sensor. In this β2AR sensor, norepinephrine caused signals that amounted to only ≈50% of those induced by epinephrine and the standard “full” agonist isoproterenol. Furthermore, norepinephrine-induced changes in the β2AR FRET sensor were slower than those induced by epinephrine (rate constants, 47 versus 128 ms). A similar partial β2AR activation signal was revealed for the synthetic agonists fenoterol and terbutaline. However, norepinephrine was almost as efficient as epinephrine (and isoproterenol) in causing activation of Gs and adenylyl cyclase. In contrast, fenoterol was quite efficient in triggering β-arrestin2 recruitment to the cell surface and its interaction with β2AR, as well as internalization of the receptors, whereas norepinephrine caused partial and slow changes in these assays. We conclude that partial agonism of norepinephrine at the β2AR is related to the induction of a different active conformation and that this conformation is efficient in signaling to Gs and less efficient in signaling to β-arrestin2. These observations extend the concept of biased signaling to the endogenous agonists of the β2AR and link it to distinct conformational changes in the receptor.  相似文献   

10.
11.
G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins.  相似文献   

12.
Fluorescence resonance energy transfer (FRET) from cyan to yellow fluorescent proteins (CFP/YFP) is a well-established method to monitor protein-protein interactions or conformational changes of individual proteins. But protein functions can be perturbed by fusion of large tags such as CFP and YFP. Here we use G protein-coupled receptor (GPCR) activation in living cells as a model system to compare YFP with the small, membrane-permeant fluorescein derivative with two arsen-(III) substituents (fluorescein arsenical hairpin binder; FlAsH) targeted to a short tetracysteine sequence. Insertion of CFP and YFP into human adenosine A(2A) receptors allowed us to use FRET to monitor receptor activation but eliminated coupling to adenylyl cyclase. The CFP/FlAsH-tetracysteine system gave fivefold greater agonist-induced FRET signals, similar kinetics (time constant of 66-88 ms) and perfectly normal downstream signaling. Similar results were obtained for the mouse alpha(2A)-adrenergic receptor. Thus, FRET from CFP to FlAsH reports GPCR activation in living cells without disturbing receptor function and shows that the small size of the tetracysteine-biarsenical tag can be decisively advantageous.  相似文献   

13.
We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I Gq-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15–20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gαq, and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by Gq. We describe the strategies used to increase the agonist-driven change in FRET while simultaneously maintaining regulatory interactions with Gαq, in the context of the known structures of Class I G protein-coupled receptors. The approach should be generally applicable to other Class I receptors which include numerous important drug targets.  相似文献   

14.
TBPB and 77-LH-28-1 are selective agonists of the M1 muscarinic acetylcholine receptor (mAChR) that may gain their selectivity through a bitopic mechanism, interacting concomitantly with the orthosteric site and part of an allosteric site. The current study combined site-directed mutagenesis, analytical pharmacology,and molecular modeling to gain further insights into the structural basis underlying binding and signaling by these agonists. Mutations within the orthosteric binding site caused similar reductions in affinity and signaling efficacy for both selective and prototypical orthosteric ligands. In contrast, the mutation of residues within transmembrane helix (TM) 2 and the second extracellular loop (ECL2) discriminated between the different classes of ligand. In particular, ECL2 appears to be involved in the selective binding of bitopic ligands and in coordinating biased agonism between intracellular calcium mobilization and ERK1/2 phosphorylation. Molecular modeling of the interaction between TBPB and the M1 mAChR revealed a binding pose predicted to extend from the orthosteric site up toward a putative allosteric site bordered by TM2, TM3, and TM7, thus consistent with a bitopic mode of binding. Overall, these findings provide valuable structural and mechanistic insights into bitopic ligand actions and receptor activation and support a role for ECL2 in dictating the active states that can be adopted by a G protein-coupled receptor. This may enable greater selective ligand design and development for mAChRs and facilitate improved identification of bitopic ligands.  相似文献   

15.
The C terminus of the beta(2)-adrenoceptor (AR) interacts with G protein-coupled receptor kinases and arrestins in an agonist-dependent manner, suggesting that conformational changes induced by ligands in the transmembrane domains are transmitted to the C terminus. We used fluorescence resonance energy transfer (FRET) to examine ligand-induced structural changes in the distance between two positions on the beta(2)-AR C terminus and cysteine 265 (Cys-265) at the cytoplasmic end of transmembrane domain 6. The donor fluorophore FlAsH (Fluorescein Arsenical Helix binder) was attached to a CCPGCC motif introduced at position 351-356 in the proximal C terminus or at the distal C terminus. An acceptor fluorophore, Alexa Fluor 568, was attached to Cys-265. FRET analyses revealed that the average distances between Cys-265 and the proximal and distal FlAsH sites were 57 and 62A(,) respectively. These relatively large distances suggest that the C terminus is in an extended, relatively unstructured conformation. Nevertheless, we observed ligand-specific changes in FRET. All ligands induced an increase in FRET between the proximal C-terminal FlAsH site and Cys-265. Ligands that have been shown to induce arrestin-dependent ERK activation, including the catecholamine agonists and the inverse agonist ICI118551, led to a decrease in FRET between the distal FlAsH site and Cys-265, whereas other ligands had no effect or induced a small increase in FRET. Taken together the results provide new insight into the structure of the C terminus of the beta(2)-AR as well as ligand-induced conformational changes that may be relevant to arrestin-dependent regulation and signaling.  相似文献   

16.
A key characteristic of G protein-coupled receptors (GPCRs) is that they activate a plethora of signaling pathways. It is now clear that a GPCR coupling to these pathways can be regulated selectively by ligands that differentially drive signaling down one pathway in preference to another. This concept, termed stimulus bias, is revolutionizing receptor biology and drug discovery by providing a means of selectively targeting receptor signaling pathways that have therapeutic impact. Herein, we utilized a novel quantitative method that determines stimulus bias of synthetic GPCR ligands in a manner that nullifies the impact of both the cellular background and the “natural bias” of the endogenous ligand. By applying this method to the M2 muscarinic acetylcholine receptor, a prototypical GPCR, we found that mutation of key residues (Tyr-802.61 and Trp-993.28) in an allosteric binding pocket introduces stimulus bias in response to the atypical ligands AC-42 (4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)piperidine HCl) and 77-LH-28-1 (1-(3-(4-butyl-1-piperidinyl)propyl)- 3,3-dihydro-2(1H)-quinolinone). By comparing stimulus bias factors among receptor internalization, G protein activation, extracellular-regulated protein kinase 1/2 (ERK1/2) signaling, and receptor phosphorylation, we provide evidence that Tyr-802.61 and Trp-993.28 act either as molecular switches or as gatekeeper residues that introduce constraints limiting the active conformation of the M2 muscarinic acetylcholine receptor and thereby regulate stimulus bias. Furthermore, we provide evidence that downstream signaling pathways previously considered to be related to each other (i.e. receptor phosphorylation, internalization, and activation of ERK1/2) can act independently.  相似文献   

17.
The activity of G protein-coupled receptors can be modulated by different classes of ligands, including agonists that promote receptor signaling and inverse agonists that reduce basal receptor activity. The conformational changes in receptor structure induced by different agonist ligands are not well understood at present. In this study, we employed an in situ disulfide cross-linking strategy to monitor ligand-induced conformational changes in a series of cysteine-substituted mutant M(3) muscarinic acetylcholine receptors. The observed disulfide cross-linking patterns indicated that muscarinic agonists trigger a separation of the N-terminal segment of the cytoplasmic tail (helix 8) from the cytoplasmic end of transmembrane domain I. In contrast, inverse muscarinic agonists were found to increase the proximity between these two receptor regions. These findings provide a structural basis for the opposing biological effects of muscarinic agonists and inverse agonists. This study also provides the first piece of direct structural information as to how the conformations induced by these two functionally different classes of ligands differ at the molecular level. Given the high degree of structural homology found among most G protein-coupled receptors, our findings should be of broad general relevance.  相似文献   

18.
Birdsall NJ  Lazareno S  Popham A  Saldanha J 《Life sciences》2001,68(22-23):2517-2524
Proteins and small molecules are capable of regulating the agonist binding and function of G-protein coupled receptors by multiple allosteric mechanisms. In the case of muscarinic receptors, there is the well-characterised allosteric site that binds, for example, gallamine and brucine. The protein kinase inhibitor, KT5720, has now been shown to bind to a second allosteric site and to regulate agonist and antagonist binding. The binding of brucine and gallamine does not affect KT5720 binding nor its effects on the dissociation of [3H]-N-methylscopolamine from M1 receptors. Therefore it is possible to have a muscarinic receptor with three small ligands bound simultaneously. A model of the M1 receptor, based on the recently determined structure of rhodopsin, has the residues that have been shown to be important for gallamine binding clustered within and to one side of a cleft in the extracellular face of the receptor. This cleft may represent the access route of acetylcholine to its binding site.  相似文献   

19.
Intramolecular fluorescence resonance energy transfer (FRET) sensors able to detect changes in distance or orientation between the 3rd intracellular loop and C-terminal tail of the human orexin OX(1) and OX(2) G protein-coupled receptors following binding of agonist ligands were produced and expressed stably. These were directed to the plasma membrane and, despite the substantial sequence alterations introduced, in each case were able to elevate [Ca(2+)](i), promote phosphorylation of the ERK1/2 MAP kinases and become internalized effectively upon addition of the native orexin peptides. Detailed characterization of the OX(1) sensor demonstrated that it was activated with rank order of potency orexin A > orexin B > orexin A 16-33, that it bound antagonist ligands with affinity similar to the wild-type receptor, and that mutation of a single residue, D203A, greatly reduced the binding and function of orexin A but not antagonist ligands. Addition of orexin A to individual cells expressing an OX(1) sensor resulted in a time- and concentration-dependent reduction in FRET signal consistent with mass-action and potency/affinity estimates for the peptide. Compared with the response kinetics of a muscarinic M(3) acetylcholine receptor sensor upon addition of agonist, response of the OX(1) and OX(2) sensors to orexin A was slow, consistent with a multistep binding and activation process. Such sensors provide means to assess the kinetics of receptor activation and how this may be altered by mutation and sequence variation of the receptors.  相似文献   

20.
The objective of the present study was to investigate the effects of senescence on the binding characteristics of muscarinic receptors by using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H]N-methylscopolamine ([3H]NMS) as ligands in young (3months), middle-age (10months) and old (24 months) male Fischer 344 rats. Muscarinic receptor density was found to decrease significantly with aging in certain brain regions, depending on the ligand employed. Moreover, the relative proportions of M1 and M2 muscarinic receptor subtypes was not significantly altered by aging, except in the aged striatum. Furthermore, the dissociation kinetics of [3H]NMS in the cerebral cortex and their allosteric modulation by gallamine were only slightly influenced by age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号