首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have propsed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of α subunits, aldehyde reductase I is a dimer of α, β subunits, and aldehyde reductase II is a monomer of δ subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (α and β) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (α subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4(0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The β subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The β subunits hybridized with the α subunits of placenta aldehyde I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristics properties of placenta aldehyde reductase I.  相似文献   

2.
Made of more than 40 subunits, the rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. In vascular plants, fungi, and animals, at least seven complex I subunits (ND1, -2, -3, -4, -4L, -5, and -6; ND is NADH dehydrogenase) are coded by mitochondrial genes. The role of these highly hydrophobic subunits in the enzyme activity and assembly is still poorly understood. In the unicellular green alga Chlamydomonas reinhardtii, the ND3 and ND4L subunits are encoded in the nuclear genome, and we show here that the corresponding genes, called NUO3 and NUO11, respectively, display features that facilitate their expression and allow the proper import of the corresponding proteins into mitochondria. In particular, both polypeptides show lower hydrophobicity compared to their mitochondrion-encoded counterparts. The expression of the NUO3 and NUO11 genes has been suppressed by RNA interference. We demonstrate that the absence of ND3 or ND4L polypeptides prevents the assembly of the 950-kDa whole complex I and suppresses the enzyme activity. The putative role of hydrophobic ND subunits is discussed in relation to the structure of the complex I enzyme. A model for the assembly pathway of the Chlamydomonas enzyme is proposed.  相似文献   

3.
An NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC. 1.2.1.12) has been purified from spinach leaves as a homogeneous protein of 150,000 daltons. Kinetic constants of 2.5 . 10(-4) M and 4 . 10(-4) M have been calculated for NAD+ and glyceraldehyde-3-phosphate, respectively. The amino acid composition is characterized by a cysteine content higher than that found in analogous enzymes. On sodium dodecyl sulphate gel electrophoresis, the native enzyme dissociates into two subunits of 37,000 and 14,000 daltons. The two subunits have been isolated in equimolar amounts by gel filtration; end-group analysis shows that alanine is the N-terminal residue of the large subunit, while serine is found at the N-terminus of the small subunit. Comparison of amino acid analysies and peptide maps shows that the two subunits have a different amino acid sequence. These results indicate that the NAD+-dependent glyceraldehyde-3-phosphate, dehydrogenase, isolated from spinach leaves has an atypical oligomeric structure, the protomer being formed by two different subunits.  相似文献   

4.
Enzyme activities of glutathione S-transferases (GSTs) toward five different substrates (benzalacetone (PBO), styrene oxide (STOX), sulfobromophthalein (BSP), 1,2-dichloro-4-nitrobenzene (DCNB) and 1-chloro-2,4-dinitrobenzene (CDNB)) as well as concentrations of four subunits of GST isozymes (1, 2, 3 and 4) were determined using cytosol fractions obtained from livers of young (6 months) and old (26 months) Fischer-344 rats of both sexes. Values for enzyme activities for three substrates (DCNB, BSP and PBO) in young male rats were significantly higher than the corresponding values in female rats. In old male rats, values were generally lower than the corresponding values in young male rats, becoming close to corresponding values in young female rats. Old female rats, however, exhibited values close to those in young female rats, except for DCNB and STOX values, which were slightly lower in old female rats. GST subunits 3 and 4, as determined by high-performance liquid chromatography after purification by affinity chromatography using S-hexyl-glutathione, were predominant in young males, whereas concentrations of subunits 1 and 2 were higher in females than in males. In male rat livers, concentrations of subunits 3 and 4 decreased considerably with age while those of subunits 1 and 2 increased, so that the subunit pattern in old male rats tended to be similar to that of young female rats. In old females, a decrease in the concentration of subunits 3 and 4 and an increase in the concentration of subunit 1 were also observed as in old male rats, while the subunit 2 concentration tended to decline. Furthermore, the elution pattern of affinity chromatography changed with age, yielding an earlier elution of most subunits in old male rats and of subunit 1 in old female rats. The results suggest that age-related changes that occur with GSTs in livers of male rats are essentially a feminization of the isozyme pattern. However, despite rather unremarkable changes in enzyme activities with age in females, considerable changes of subunit pattern (a general decrease in concentration of subunits 2, 3 and 4 and an increase in the concentration of subunit 1) were also observed in female rats, and these were much greater than could be predicted from enzyme activity changes with age in this sex.  相似文献   

5.
Pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from human liver and red cells has been purified to homogeneity; its subunit structure and some of its kinetic characteristics have been studied. The influence of a partial proteolysis by trypsin on the subunit structure, the isozymic pattern and the kinetic characteristics of red cell and liver enzyme have been investigated. From the results of this study we may conclude that: 1. Liver (L-type) pyruvate kinase is composed of 4 identical L subunits while the major form of erythrocyte enzyme (PK-R2) is a heterotetramer designated as L2L2', the molecular weight of L' being slightly higher than that of L subunits (63 000 and 58 000 respectively). Pyruvate kinase PK-R1, predominant in the erythroblasts and the young red cells, is composed of four identical L' subunits. 2. A mild tryptic attack is able to transform PK-R1 into PK-R2, then PK-R2 into pyruvate kinase L (PK-L). The same proteolytic treatment transforms the L' subunits into L ones. 3. Consequently L-type pyruvate kinase seems to be initially synthesized in the erythroid precursors as an L4' enzyme secondarily partially proteolysed into L2L2'. In liver a very active proteolytic system would be responsible for the total transformation into L4 pyruvate kinase. 4. L4' enzyme exhibits Michaelis-Menten kinetic behaviour with an apparent Michaelis constant of 3.8 mM whereas L4 enzyme shows both positive and negative homotropic interactions towards phosphoenolpyruvate and has [S] 0.5 of 1.2 mM. The characteristics of L2L2' are roughly intermediate between those of L4' and of L4. Fructose 1,6-biphosphate decreases [S]0.5 for these three pyruvate kinase forms without suppressing the differences in the apparent affinity for phosphoenolpyruvate of these enzymes. 5. L4 pyruvate kinase is more inhibited by Mg-ATP than L4', with L2L2' in the intermediate range. 6. Tryptic treatment of each enzyme form studied transforms its kinetic behaviour into that observed for L4.  相似文献   

6.
Complex I (NADH:ubiquinone oxidoreductase) purified from bovine heart mitochondria was treated with the detergent N, N-dimethyldodecylamine N-oxide (LDAO). The enzyme dissociated into two known subcomplexes, Ialpha and Ibeta, containing mostly hydrophilic and hydrophobic subunits, and a previously undetected fragment referred to as Igamma. Subcomplex Igamma contains the hydrophobic subunits ND1, ND2, ND3, and ND4L which are encoded in the mitochondrial genome, and the nuclear-encoded subunit KFYI. During size-exclusion chromatography in the presence of LDAO, subcomplex Ialpha lost several subunits and formed another characterized subcomplex known as Ilambda. Similarly, subcomplex Ibeta dissociated into two smaller subcomplexes, one of which contains the hydrophobic subunits ND4 and ND5; subcomplex Igamma released a fragment containing ND1 and ND2. These results suggest that in the intact complex subunits ND1 and ND2 are likely to be in a different region of the membrane domain than subunits ND4 and ND5. The compositions of the various subcomplexes and fragments of complex I provide an organization of the subunits of the enzyme in the framework of the known low resolution structure of the enzyme.  相似文献   

7.
Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27 kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and α-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C19/C21-steroids into 3β-hydroxysteroids. The stereospecific conversion to 3β-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor α ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3β-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.  相似文献   

8.
The Rhodococcus erythropolis strain (N′4) possesses the ability to convert 4-chloro-3-hydroxybutyronitrile into the corresponding acid. This conversion was determined to be performed by its nitrile hydratase and amidase. Ammonium sulfate fractionation, DEAE ion exchange chromatography, and phenyl chromatography were used to partially purify nitrile hydratase from cell-free extract. A SDS-PAGE showed that the partially purified enzyme had two subunits and gel filtration chromatography showed that it consisted of four subunits of α2β2. The purified enzyme had a high specific activity of 860 U mg−1 toward methacrylonitrile. The enzyme was found to have high activity at low temperature range, with a maximum activity occurring at 25 °C and be stable in the presence of organic acids at higher temperatures. The enzyme exhibited a preference for aliphatic saturated nitrile substrates over aliphatic unsaturated or aromatic ones. It was inhibited by sulfhydryl, oxidizing, and serine protease inhibitors, thus indicating that essential cysteine and serine residues can be found in the active site.The purified nitrile hydratase was able to convert 4-chloro-3-hydroxybutyronitrile into the corresponding amide at 15 °C. GC analysis showed that the initial conversion rate of the reaction was 215 mg substrate consumed min−1 mg−1. This demonstrated that this enzyme could be used in conjunction with a stereoselective amidase to synthesize ethyl (S)-4-chloro-3-hydroxybutyrate, an intermediate for a hypercholesterolemia drug, Atorvastatin.  相似文献   

9.
Phosphofructokinaseis a key regulatory enzyme of the glycolytic pathway. We have determined the structure of this enzyme from Saccharomyces cerevisiae to a resolution of 2.0 nm. This is the first structure available for this family of enzymes in eukaryotic organisms. Phosphofructokinase is an octamer composed of 4α and 4β subunits arranged in a dihedral point group symmetry D2. The enzyme has a very open and elongated structure, with dimensions of 24 nm in length and 17 nm in width. The final structure, calculated from 0° tilt projections of the molecule at random orientations using as reference the volume obtained by the random conical reconstruction technique in ice, has allowed us to discern the shapes of the subunits and their mutual arrangement in the octamer.  相似文献   

10.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

11.
Y Blatt  I Pecht 《Biochemistry》1979,18(13):2917-2922
Anaerobic reductive spectrophotometric titrations of Pseudomonas aeruginosa cytochrome oxidase were performed. Both types of hemes (C and D) of the dimeric enzyme were monitored. The reduction process was found to involve cooperative allosteric and spectroscopic interactions between the two subunits. The model fitting the data best involves the following features. (1) The redox potential of heme C is about 60 mV higher than that of heme D. (2) In the electron uptake, a positive cooperativity of about 30 mV exists between the two D-type hemes residing in the two subunits. (3) A negative cooperativity of the same magnitude (30 mV) is found between the two C-type hemes bound to two subunits. (4) No interaction was found between heme C and D in the same subunit or in the different subunits. (5) It is suggested that the reduction of the heme, of each kind, has about twice the spectral change compared to that observed upon reduction of the second one. The possible significance of this model for the mechanism of action of the enzyme is discussed  相似文献   

12.
The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained no detectable PRPP synthase activity. In contrast PRPP could be detected in growing cells containing PRS1 PRS2, PRS1 PRS3, PRS5 PRS2, or PRS5 PRS4. These apparent conflicting results indicate that, apart from the PRS1 PRS3-specified enzyme, PRS-specified enzyme is functional in vivo but unstable when released from the cell. Certain combinations of three PRS genes appeared to produce an enzyme that is stable in vitro. Thus, extracts of strains harboring PRS1 PRS2 PRS5, PRS1 PRS4 PRS5, or PRS2 PRS4 PRS5 as well as extracts of strains harboring combinations with PRS1 PRS3 contained readily assayable PRPP synthase activity. The data indicate that although certain pairwise combinations of subunits produce an active enzyme, yeast PRPP synthase requires at least three different subunits to be stable in vitro. The activity of PRPP synthases containing subunits 1 and 3 or subunits 1, 2, and 5 was found to be dependent on Pi, to be temperature-sensitive, and inhibited by ADP.  相似文献   

13.
14.
Phosphofructokinase-1 from Saccharomyces cerevisiae is composed of four alpha- and four beta-subunits, each of them carrying catalytic and regulatory bindings sites for MgATP. In this paper, various photoaffinity labels, such as 8-azidoadenosine 5'-triphosphate, 8-azido-1,N6-ethenoadenosine 5'-triphosphate, and 8-N3-3'(2')-O-biotinyl-8-azidoadenosine 5'-triphosphate have been used to study their interaction with the enzyme in the dark and during irradiation. All nucleotidetriphosphates function as phosphate donor forming fructose 1,6-bisphosphate from fructose 6-phosphate. However, the kinetic analysis revealed distinctly differences between them. Photolabeling causes a decrease in enzyme activity to a similar extent, and ATP acts as competitive effector to inactivation. Three bifunctional diazidodiadeninedinucleotides (8-diN3AP4A, monoepsilon-8-diN3AP4A, and diepsilon-8-diN3AP4A) were applied for studying the spatial arrangement of the nucleotide binding sites. No cross-linking of the subunits was obtained by irradiation of the enzyme with 8-diN3AP4A. Photolabeling with diepsilon-8-diN3AP4A resulted in the formation of two alpha-beta cross-links with different mobilities in the SDS-polyacrylamide gel electrophoresis, while monoepsilon-8-diN3AP4A yielded only one alpha-beta cross-link. Because an interfacial location of the catalytic sites between two subunits is less likely, we suggest that the formation of cross-linked subunits may be the result of specific interactions of the bifunctional photolabels with regulatory sites at the interface of both subunits.  相似文献   

15.
Cytochrome oxidase was purified from Neurospora crassa by ammonium sulfate fractionation in the presence of bile salts. The enzyme preparations contained 10-13 nmol of heme a per mg of protein; no other hemoproteins could be detected. Dodecylsulfate gel electrophoresis resolved the enzyme complex into seven major bands, representing seven polypeptide subunits. A procedure is described that allows the isolation of these enzyme subunits on a large scale starting from a single batch of oxidase preparation. It involves dissociation of the enzyme complex by dodecylsulfate and subsequent separation of the obtained polypeptides by chromatography in the presence of various dodecylsulfate concentrations. Purification of subunits 3, 4, 5, 6 and 7 was achieved by column chromatography using molecular sieves (Sephadex G-100, Bio Gel P-60) and hydroxylapatite. For the purification of subunits 1 and 2 an electrophoretic separation on a preparative polyacrylamide gel was required. The advantages and disadvantages of the separation procedure of the enzyme polypeptides are discussed. As a special point of interest, the conservation of antigenic determinants of the polypeptide chains during the dodecylsulfate treatment is considered.  相似文献   

16.
17.
Using the technique of affinity chromatography on a myo-inositol-substituted Sepharose, the myo-inositol oxygenase from rat kidneys was purified to homogeneity. The active enzyme contains iron, most probably in its divalent form. Electrophoresis on polyacrylamide gel containing sodium dodecylsulphate causes the cleavage of the enzyme protein into apparently identical subunits with a molecular weight of approximately 17,000. The smallest active unit consists of 4 subunits, and is in a pH-dependent equilibium with species consisting of 8, 12, and 16 subunits, respectively, which all show the same specific enzyme activity. In the presence of oxygen the enzyme is highly unstable; at the early stages of inactivation it can be reactivated by reducing agents like NaBH4. Under anaerobic conditions or under the influence of Fe2-chelating agents, the enzyme is also inactivated; this inactivation is caused by the loss of iron and concomitant cleavage into the subunits. It can be reversed by incubation with FeSO4 in the presence of air. If myo-inositol and FeSO4 are present, the reactivation involves an oligomerization to the species with 16 subunits with the uptake of 8 gram-atoms of iron per mole of this species. The enzyme reaction follows Michaelis-Menten kinetics; the Michaelis constants are 4.5 x 10(-2)M for myo-inositol and 9.5 x 10(-6)M for oxygen.  相似文献   

18.
Coenzyme QH2-cytochrome c reductase is a multisubunit complex of the mitochondrial respiratory chain. Mutants of Saccharomyces cerevisiae with lesions in cytochromes b, c1, the non-heme iron protein, and the noncatalytic subunits have been used to study several aspects of the assembly of the complex. Strains with mutations in single subunits exhibit a variety of different phenotypes. Mutants in the 17-kDa (core 3) subunit grow normally on a nonfermentable substrate indicating that this component is not essential for either enzymatic activity or assembly of the enzyme. Mutations in all the other subunits express a respiratory-deficient phenotype and the absence of detectable enzyme activity. Among the respiratory-defective strains, some have mature cytochrome b (non-heme iron protein and cytochrome c1 mutants), while other mutants lack spectrally detectable cytochrome b and have reduced levels of the apoprotein (mutants in the 44-, 40-, 14-, and 11-kDa core subunits). Mutations in single subunits exert different effects on the concentrations of their partner proteins. These may be summarized as follows: 1) No substantial loss in the 44- or 40-kDa core subunits is seen in single mutants; 2) the concentration of cytochrome c1 is also relatively unaffected by mutations in the other subunits except for the cytochrome b mutant which has 60% of the wild type level of cytochrome c1; 3) all the single mutants have only 15-20% of the normal amount of non-heme iron protein; 4) mutations in the non-heme iron protein have no appreciable effect on the concentrations of the other subunits; 5) mutations in single subunits cause parallel decreases in the concentrations of cytochrome b, the 14-, and the 11-kDa subunits. These results indicate that the synthesis or stability of a subset of subunits depends on the presence of other subunit polypeptides of the complex. At present we favor the idea that the observed changes in the concentrations of some subunits are due to higher turnover rates of the proteins in a partially assembled complex. Based on the mutant phenotypes, a tentative model for the assembly of coenzyme QH2-cytochrome c reductase is proposed. According to this model it is envisioned that the subunits interact with one another in the lipid bilayer. Maturation of apocytochrome b occurs after it is assembled with the nonstructural subunits to form a core structure. This intermediate complex interacts with the non-heme iron protein to form the active holoenzyme.  相似文献   

19.
Homogeneous ribulose-1,5-bisphosphate carboxylase purified from autotrophically grown Hydrogenomonas eutropha can be dissociated with sodium dodecylsulfate into small 15,000-dalton subunits and large 56,000- and 52,000-dalton subunits (the latter in a mole ratio of 5:3). The overal mole ratio of small to large subunits is 1.08. Considering the molecular weight of the native enzyme (516,000), the simplest quarternary structure of this enzyme consists of 8 large (mixed) and 8 small subunits. Isolation of the enzyme from cells under conditions that should minimize proteolysis has no effect upon the observed heterogeneity of the large subunits.  相似文献   

20.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of at least 14 subunits (NQO1-14) and is located in the cytoplasmic membrane. In the present study, topological properties and stoichiometry of the 7 subunits (NQO1-6 and NQO9) of the P. denitrificans NDH-1 in the membranes were investigated using immunological techniques. Treatments with chaotropic reagents (urea, NaI, or NaBr) or with alkaline buffer (pH 10-12) resulted in partial or complete extraction of all the subunits from the membranes. Of interest is that when NaBr or urea were used, the NQO6 and NQO9 subunits remained in the membranes, whereas the other subunits were completely extracted, suggesting their direct association with the membrane part of the enzyme complex. Both deletion study and homologous expression study of the NQO9 subunit provided a clue that its hydrophobic N-terminal stretch plays an important role in such an association. In light of this observation and others, topological properties of the subunits in the NDH-1 enzyme complex are discussed. In addition, determination of stoichiometry of the peripheral subunits of the P. denitrificans NDH-1 was completed by radioimmunological methods. All the peripheral subunits are present as one molecule each in the enzyme complex. These results estimated the total number of cofactors in the P. denitrificans NDH-1; the enzyme complex contains one molecule of FMN and up to eight iron-sulfur clusters, 2x[2Fe-2S] and 6x[4Fe-4S], provided that the NQO6 subunit bears one [4Fe-4S] cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号