首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.  相似文献   

2.
Occasional pesticide application in integrated pest management to at least part of a crop requires that any biological control agents must re-invade previously sprayed areas in order that resurgent pests can be constrained. The ability of the phytoseiid predatory mite Phytoseiulus persimilis to feed on adult two-spotted spider mite (TSSM) Tetranychus urticae on excised leaf discs in both control conditions and in a treatment with a sub lethal residue of agricultural mineral oil (AMO) was assessed. The predator exhibited a Type II functional response with the asymptote significantly higher in the AMO conditions due to the fact that the prey grew slower and reached a smaller size in this treatment. In terms of prey volume eaten, the satiation level of the predator was unchanged by the AMO deposits. The numbers of eggs produced by adult P. persimilis females at densities of 4, 8 and 16 TSSM adult females/disc in the control were significantly higher than those in the AMO treatment, but were similar for the higher density levels, 32 and 64 prey per disc. Thus the functional response in terms of volume of prey eaten explained the numerical response in terms of predator eggs produced. The presence of AMO deposits when the prey were at high density had no effect on predator efficiency (volume eaten) but resulted in a lower intake than that in control conditions when there was a greater distance between prey.  相似文献   

3.
Environmental variables, such as temperature, are important in determining the efficiency of biological control in ornamental crops. This paper examines the effect of temperature on the functional response of adult female Phytoseiulus persimilis to eggs of the spider mite, Tetranychus urticae. The functional response was determined using a new functional response assay technique with plant stems as an arena, rather than leaf discs. The use of plant stems allows the influence that plant structure has on predation to be incorporated into the assay. Control assays were also used (without predators) to estimate natural losses of prey. The data were analysed using a binomial model, with the use of Abbot's formula to correct for the losses in the controls. A combined equation to describe the effect of temperature and prey density on the predation rate of Phytoseiulus persimilis was derived. The results showed that more prey are eaten as the temperature increases from 15 degrees C to 25 degrees C, but the number of prey eaten then declines at 30 degrees C, although not to the levels seen at 20 degrees C. The implication of these results for biological control in ornamental crops, where the temperature can often exceed 30 degrees C, is discussed.  相似文献   

4.
The objective of this study was to determine whether differences in hairiness of tomato plants affect the functional and numerical response of the predator Neoseiulus californicus McGregor attacking the two-spotted spider mite, Tetranychus urticae Koch. Two tomato hybrids with different density of glandular hairs were used. The functional response was measured by offering eggs and adults of T urticae at densities ranging from 4 to 64 items per tomato leaflet (surface ca. 6.3 cm2); eggs were offered to predator protonymphs and deutonymphs, adult spider mites to adult predators. The number of spider mites eaten as a function of initial density was fitted to the disc equation. Predator densities were regressed against initial prey densities to analyze the numerical response. The number of eggs and adults of T. urticae eaten by N. californicus was extremely low in both hybrids. The nymphal stage of N. californicus and prey density had a significant effect on the number of T urticae eggs eaten by the predator, while hybrid had no effect. The functional response fitted reasonably well to the Holling model. The handling time (Th) and the attack rate (a) were very similar among the two hybrids. The numerical response indicated that the absolute density of predators increased with changes in spider mite densities but the relative predator/prey density decreased in both hybrids. Tomato hairiness prevented N. californicus from exhibiting a strong numerical response and the predator functional response was much lower than observed in other host plants and other phytoseiids. This result shows the need to consider plant attributes as an essential and interactive component of biological control practices.  相似文献   

5.
Raoiella indica Hirst (Acari: Tenuipalpidae) is a phytophagous mite that recently invaded the Western Hemisphere. This mite is a multivoltine and gregarious species that can reach very high population densities and cause significant damage to various palm species (Arecaceae). The predatory mite Amblyseius largoensis (Muma) (Acari: Phytoseiidae) has been found associated with R. indica in Florida. This study evaluated A. largoensis for potential to control R. indica by (1) determining predator preferences among developmental stages of R. indica, and (2) estimating predator functional and numerical responses to varying densities of its most preferred prey-stage. Under no-choice conditions A. largoensis consumed significantly more eggs than other stages of R. indica. In choice tests A. largoensis showed a significant preference for R. indica eggs over all other prey stages. Amblyseius largoensis displayed a type II functional response showing an increase in number of prey killed with an increase in prey population density. Consumption of prey stabilized at approximately 45 eggs/day, the level at which oviposition by the predator was maximized (2.36?±?0.11 eggs/day; mean?±?SEM). Results of this study suggest that A. largoensis can play a role in controlling R. indica populations, particularly when prey densities are low.  相似文献   

6.
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.  相似文献   

7.
The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.  相似文献   

8.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

9.
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.  相似文献   

10.
Current glasshouse biological control practice relies on regular prophylactic introductions of one or two 'best' species of natural enemy. Whilst this is effective for much of the time, occasional failures occur due to factors such as differences in response to seasonal changes in environmental conditions and/or host plant effects. This study looks at the predatory behaviour of a specialist coccinellid, Stethorus punctillum Weise, and a generalist mite, Amblyseius californicus McGregor (which predate on the two-spotted spider mite, Tetranychus urticae ) in order to assess how they responded to temperatures and relative humidities typical of glasshouse conditions on four edible crop plant species. Activity (distance covered, time spent walking, walking speed, angular velocity, and turning rate) was recorded at 20, 25 and 30 o C and at relative humidity (RH) levels of 33, 65 and 90%, on tomato, pepper, aubergine and cucumber leaves, and analysed using video-computer techniques. The results show that the activity of S. punctillum significantly increased at higher temperature levels. Host plant species also strongly influenced the performance of the predator, with it being most active on pepper and tomato and least active on aubergines. RH had no significant influence. The activity and predation by A. californicus increased at low humidity levels, especially in terms of time spent moving and number of prey killed. Temperature levels had no significant influence, but host plant species strongly influenced the performance of the predator, which was most active on pepper, and least active on aubergines. Further research was conducted with semi-field trials to investigate the efficacy in controlling TSSM with different combination of predators. When contrasting the commercially available predatory mite Phytoseiulus persimilis , used alone, compared with its use in a treatment with a combination of predator species, there was a stronger decrease in TSSM numbers on the crop plants in the latter treatment.  相似文献   

11.
Prey species often distribute themselves patchily in their habitats. In response to this spatial variation in prey density, some predator species aggregate in patches of higher prey density. This paper reviews a series of laboratory experiments to demonstrate the patterns of responses by phytoseiid predators (Phytoseiulus persimilis, Typhlodromus occidentalis and Amblyseius andersoni) to spatial variation in the density of their spider mite prey (Tetranychus urticae) and reveal the behavioural mechanisms underlying the observed patterns. In addition, patterns of aggregation were examined at a variety of spatial scales on plants in greenhouses. The patterns, mechanisms and spatial scale of aggregation in three predatory species are discussed in relation to their varying degrees of polyphagy. The results show that a specialist predator species (1) aggregates more strongly than generalist predators, (2) does so not because it finds prey patches of high density more easily but because it remains in these patches longer than generalist predators and (3) tends to aggregate more often at lower levels of spatial scale than generalist predators. It is suggested that these conclusions, based mainly on laboratory studies of a small sample of species, should be tested in the future on a wider selection of specialist and generalist species at different scales in the field. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Abstract  This paper tests the hypothesis that habitat differences affect the migratory ability of the Chilean predatory mite, Phytoseiulus persimilis , an introduced biological control agent of the spider mite, Tetranychus urticae . It is suggested that habitat resistance accounts for the species' inability to invade rainforests in south-eastern Queensland, Australia. Like its prey, P. persimilis migrates to distant plants on air currents. To test our hypothesis, populations of the Chilean predatory mite were established on potted bean plants in both remnant rainforest and adjacent open fields, and their migration monitored using sticky traps. Overall it was found that prey populations on leaves were similar in both habitats, but those of predators were about 20% lower in rainforest. However, the numbers of both predators and prey caught on sticky traps in rainforest were about 6% and 25%, respectively, of those caught in open fields, indicating a strongly reduced rate of aerial migration in the forest. The number of P. persimilis caught on the sticky traps increased with increasing populations of predators on foliage. Thus, dense vegetation inhibits the movement of air currents and inhibits colonisation by both predators and, to a lesser extent, spider mites. These results suggest that the inhibition of aerial migration is one reason for lower numbers of P. persimilis in forest habitats, both because its own vagility is restricted, and because its prey is less able to disperse.  相似文献   

13.
The predatory mite Phytoseiulus persimilis is frequently reported to perform poorly on greenhouse tomatoes. As the predators are mass-reared on another host plant (bean), we supposed that they are poorly adapted to tomato, a plant densely packed with poisonous and sticky glandular hairs. This hypothesis was tested by comparing the control capacity of a stain of P. persimilis directly obtained from a mass rearing with the same strain after four generations on tomato. Both strains were released in a tomato crop in two identical compartments of a greenhouse and the population dynamics of prey (a tomato strain of Tetranychus urticae) and predator were recorded at weekly time intervals. It was found that the strain previously exposed to a tomato environment performed better than the unexposed strain: (1) its population increased faster; (2) the prey population declined faster; and (3) the damage to new-grown tomato leaves was considerably lower. To investigate the causes of the difference in performance between the exposed and unexposed strains, oviposition and survival rates were assessed on a diet of two-spotted spider mites on tomato leaf sections. In addition, the unexposed strain was tested on a diet of two-spotted spider mites on bean leaf sections. The difference in oviposition rates of both predator strains was small compare to the overall mean. However, the oviposition rate of the first generation of predators since transfer from bean to tomato dropped to less than half of the original value. Moreover, mortality in the first generation increased from 14% to 89%, whereas it decreased to 0% after four generations. Future research should clarify whether these changes in life history are due to selection or to physiological adaptation.  相似文献   

14.
The Spical strain of the predatory mite Neoseiulus californicus (McGregor) is used as a biological control agent, but little is known about its preferred prey and host plants in Japan. Here we studied the development, reproduction and prey consumption of the Spical strain when fed on eggs of five different spider mite species deposited on both their laboratory-rearing plant and cherry, on which all five spider mite species developed well. The developmental periods of immature N. californicus females and males were significantly affected by the prey species they fed on, but not by the plants. No difference was found between males and females. The developmental period was shorter on eggs of two Tetranychus species than on eggs of Panonychus ulmi. Immature females had a higher predation rate than immature males. Preoviposition period, oviposition period and the number of eggs laid per female were not significantly affected by either the plants or the type of prey eggs. The postoviposition period and total adult longevity were shorter on eggs of P. ulmi than of the other four prey species, but there was no effect of plant substrate. The postoviposition period of the Spical strain was much longer than that of other N. californicus strains or other predatory mite species: the postoviposition period of the Spical strain was more than three times longer than the oviposition period, accounting for more than 75% of the total adult longevity. This suggests that the females need multiple mating to reach full egg load, but this remains to be tested. Total consumption by N. californicus adults was lower for eggs of P. ulmi than for eggs of the other four species, apparently because of the shorter postoviposition period when fed on eggs of P. ulmi. The intrinsic rates of natural increase (r m) on the rearing plant did not differ among prey species, whereas those on cherry were significantly different: the value was higher on Tetranychus urticae eggs than on eggs of other species. Only when N. californicus fed on T. urticae eggs, the r m-values were significantly different between the rearing plant and cherry (higher on cherry). Thus, the Spical strain of N. californicus could feed on eggs of all five spider mite species, deposited on a variety of plants with similar r m-values, suggesting that it could be successfully used to control spider mites in orchards and various crop fields of Japan.  相似文献   

15.
A greenhouse experiment was conducted to determine the effect of plant spacing and predator–prey ratio on dispersal and foraging efficiency of the predatory mite, Phytoseiulus persimilis, on the twospotted spider mite, Tetranychus urticae. When predators were released at the end of spider mite-infested arrays of lima bean plants that had either no spacing or two different patterns of spacing among plant rows, plant damage was uniformly low throughout the experiment at both predator–prey ratios (1:10 and 3:10) in the treatment with no spacing. In contrast, damage was higher in both treatments where plant rows were interrupted by spacing. At the 1:10 ratio, more plants closer to the predator release point experienced moderate damage than at the 3:10 ratio where only the plant rows farthest from the release point had unacceptable damage. Our findings suggest that point releases of P. persimilis at the standard 1:10 predator–prey ratio should be effective within a diameter of at least 65?cm on mite-infested patches of plants where pots are touching. However, if gaps in plant rows exist, even large numbers of predators may not be sufficient to protect parts of the crop unless predators are released at shorter fixed points in the greenhouse crop.  相似文献   

16.
Isolated colonies of the predatory mite, Phytoseiulus persimilis, were used to gain information regarding prevalence and transmission of Microsporidium phytoseiuli. Two colonies of P. persimilis were reared on spider mite (Tetranychus urticae)-infested bean plants in isolated cages. Disease prevalence of predators from Colony 1 remained relatively low (between 0 and 15%) over 57 weeks of observation whereas disease prevalence of predators from Colony 2 increased over 3 months (from 12 to 100%). Disease prevalence among predators from Colony 1 had increased to 100% 2 months after weekly sampling had ceased for this colony and periodic sampling confirmed that disease prevalence among individuals of both colonies remained at 100%. Microsporidian spores were not detected in randomly chosen samples of T. urticae prey mites that were removed and examined biweekly during this period. Although numerous microsporidian spores were observed in smear preparations of fecal pellets examined by light microscopy, spores were not observed on leaf surfaces or predator feces when examined by SEM. The latter appeared as intact aggregates composed of numerous dumbbell-shaped crystals and it is unlikely that spores are liberated from intact fecal pellets onto leaf surfaces. Vertical transmission of M. phytoseiuli was 100%; horizontal transmission was low (14.3%) and occurred only when immature P. persimilis were permitted to develop in contact with infected immature and adult predators. The mean number of eggs produced per mated pair was highest when uninfected females were mated with uninfected males (63.2 eggs per mated pair). Although mean egg production decreased when one or both parents were infected, not all differences were significant. Male predatory mites did not contribute to infection of their progeny. Results suggest that routine examination of P. persimilis for microsporidian spores is essential for the management of M. phytoseiuli within P. persimilis colonies. Low disease prevalence and lack of obvious disease signs or symptoms, as in the case of M. phytoseiuli, increase the probability that these pathogens will escape notice unless individuals are routinely examined for pathogens.  相似文献   

17.
The dispersal behaviour of the predatory mite Phytoseiulus persimilis Athias-Henriot between bean plants was studied in a greenhouse. The aim of the study was to estimate the rate of predator emigration affected by different densities of Tetranychus urticae Koch and different numbers of between-plant connections (bridges). The results show that predators emigrate from a plant almost exclusively as a response to the local prey density whereas the loss rate (the per capita rate at which predators disappear from the system) also depends on the prey density on the surrounding plants, provided they are connected to the central plant by bridges. © Rapid Science Ltd. 1998  相似文献   

18.
Cannibalism (intraspecific predation) on conspecific eggs was investigated in the predatory stigmaeid mite, Agistemus exsertus Gonzalez in the absence of eggs of Tetranychus urticae Koch (no-choice tests) and presence of three densities of prey eggs simultaneously (choice tests) in the laboratory. Data show that cannibalism occurs in immatures and adult females of the predator, which successfully developed and reproduced on conspecific eggs as an alternative prey in the absence of prey eggs. In no-choice tests, cannibalism rate on conspecific eggs by A. exsertus stages was significantly lower than the predation rate on T. urticae eggs. The predatory mite exhibited a marked decline in oviposition rate when preyed on conspecific eggs compared with feeding on prey eggs. The developmental duration and longevity of A. exsertus females were significantly longer 1.9 and 1.7 times, respectively, when fed on conspecific eggs than feeding on T. urticae eggs. The propensity of the predator towards cannibalism depends on the prey density, when T. urticae eggs and conspecific eggs are present simultaneously. Provision of increased densities of prey eggs significantly decreased cannibalism and predation by A. exsertus stages, which fed generally less on conspecific eggs than on T. urticae eggs in choice tests. The oviposition rate of the predator increased significantly, as the egg density of the prey increased. The developmental period and longevity of A. exsertus females showed significantly gradual shortness with increasing egg density of the prey.  相似文献   

19.
Biological control in ornamental crops is challenging due to the wide diversity of crops and cultivars. In this study, we tested the hypothesis that trichome density on different host plants influences the behavior and performance of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Behavioural observations of this predator in the presence or absence of prey (western flower thrips, Frankliniella occidentalis Pergande) (Thysanoptera: Thripidae) were done on leaf squares of ornamental plant species differing in trichome density (rose, chrysanthemum and gerbera) and compared to a smooth surface (plastic). Tomato leaves were used to observe the influence of glandular trichomes. The performance of A. swirskii was assessed by measuring predation and oviposition rate. Behaviour of A. swirskii was influenced by plant species. Up to a certain density of trichomes, trichome number had a negative effect on walking speed. It was highest on plastic, followed by rose. No differences were found among chrysanthemum, gerbera and tomato. Walking speed was slightly higher on disks without prey. Proportion of time spent walking was the same on leaf disks of all plant species, with and without prey. No effect of glandular trichomes on tomato leaves was seen. Most thrips were killed and consumed on gerbera, and least on rose. Predation rates on chrysanthemum and plastic were intermediate. In contrast, no differences in oviposition rate were found among plant species. The results of this study indicate that trichome density can explain some of the variability in efficacy of A. swirskii on different crops. Release rates of A. swirskii may need to be adjusted depending on the crop in which it is used.  相似文献   

20.
We studied the prey stage preference and feeding behaviour of the first to third instar larvae and adult females of Oligota kashmirica benefica Naomi (Coleoptera: Staphylinidae), a predator of the spider mite Tetranychus urticae Koch (red form) (Acari: Tetranychidae), on leaves of the kudzu vine (Pueraria lobata (Wild.) Ohwi (Leguminosae)) under laboratory conditions. The number of mites eaten increased with the growth of predator larvae. Third instar larvae preyed on all stages of spider mite, whereas first instar larvae preyed mainly on immobile stages (eggs and quiescent stages). The predator larvae showed two types of foraging behaviour (active searching and ambush behaviour) when targeting the mobile stages (larval, nymph and adult stages of prey). Although no difference was found in the number of prey consumed by adult females and third instar larvae of the predator, the adult females mainly attacked and consumed the immobile stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号