首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
All proteins of the villin superfamily, which includes the actin-capping and -severing proteins such as gelsolin, scinderin, and severin, are calcium-regulated actin-modifying proteins. Like some of these proteins, villin has morphologically distinct effects on actin assembly depending on the free calcium concentrations. At physiological calcium (Ca2+) villin nucleates and bundles actin, whereas at higher concentrations it caps (>50 microm) and severs (>200 microM) actin filaments. Although Ca(2+)-binding sites have been described in villin, the functional characterization of these sites has not been done previously. In the present study we functionally dissect the calcium-dependent actin-capping and -depolymerizing sites in villin. Our analysis reveals that villin binds Ca2+ with a Kd of 80.5 microM, a stoichiometry of 5.97, and a Hill's coefficient of 1.2. Using the NMR structure of villin 14T and the gelsolin-actin/Ca2+ crystal structure, six putative sites that result in Ca(2+)-induced conformational changes were identified in human villin and confirmed by mutational analysis. Molecular dynamics studies support the mutational analysis and provide a model for structural difference in the A93G mutant that prevents the calcium-induced conformational changes in the S1 domain of villin. Furthermore, we determined that villin expresses at least two types of Ca(2+)-sensitive sites that determine separate functional properties; site 1 (Glu-25, Asp-44, and Glu-74) regulates actin-capping, whereas sites 1 and 2 (Asp-86, Ala-93, and Asp-61), together with the intra-domain calcium-sensitive sites in villin, regulate actin depolymerization by villin. This is the first study that employs sequential mutagenesis to biochemically and functionally characterize the calcium-sensitive sites in villin. Such mutational analysis and functional characterization of the actin-capping and -depolymerizing sites are unknown for other proteins of the villin family.  相似文献   

2.
TANK-binding kinase 1 (TBK1) and inducible IκB-kinase (IKK-i) are central regulators of type-I interferon induction. They are associated with three adaptor proteins called TANK, Sintbad (or TBKBP1) and NAP1 (or TBKBP2, AZI2) whose functional relationship to TBK1 and IKK-i is poorly understood. We performed a systematic affinity purification-mass spectrometry approach to derive a comprehensive TBK1/IKK-i molecular network. The most salient feature of the network is the mutual exclusive interaction of the adaptors with the kinases, suggesting distinct alternative complexes. Immunofluorescence data indicated that the individual adaptors reside in different subcellular locations. TANK, Sintbad and NAP1 competed for binding of TBK1. The binding site for all three adaptors was mapped to the C-terminal coiled-coil 2 region of TBK1. Point mutants that affect binding of individual adaptors were used to reconstitute TBK1/IKK-i-deficient cells and dissect the functional relevance of the individual kinase-adaptor edges within the network. Using a microarray-derived gene expression signature of TBK1 in response virus infection or poly(I∶C) stimulation, we found that TBK1 activation was strictly dependent on the integrity of the TBK1/TANK interaction.  相似文献   

3.
Functional dissection of the apicomplexan glideosome molecular architecture   总被引:1,自引:0,他引:1  
The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.  相似文献   

4.
5.
We report the creation and characterization of several transgenic mouse lines that carry genes coding for the Ak alpha or Ak beta MHC class II (or Ia) molecules. In all these lines, the transgenes are expressed at the RNA and protein level with correct tissue and cell type specificity. Crosses between certain of them yield progeny displaying very high surface levels of class II protein--roughly five times the normal amount--allowing us to evaluate the consequences of quantitative variation in Ia molecule density on the organization and function of the immune system. The effects appear rather limited: we detect subtle changes in thymic lymphocyte subpopulations, as well as an enhanced Ag presentation capacity in vitro. Yet, in vivo responses are largely unaffected, and Ia overexpression to such levels does not provoke lymphoproliferation, immunodeficiency, or autoimmunity.  相似文献   

6.
RNA guided ribonuclease complexes play central role in RNA interference. Members of the evolutionarily conserved Argonaute protein family form the catalytic cores of these complexes. Unlike a number of other plant Argonautes, the role of AGO2 has been obscure until recently. Newer data, however, have indicated its involvement in various biotic and abiotic stress responses. Despite its suggested importance, there is no detailed characterization of this protein to date. Here we report cloning and molecular characterization of the AGO2 protein of the virological model plant Nicotiana benthamiana. We show that AGO2 can directly repress translation via various miRNA target site constellations (ORF, 3′ UTR). Interestingly, although AGO2 seems to be able to silence gene expression in a slicing independent fashion, its catalytic activity is still a prerequisite for efficient translational repression. Additionally, mismatches between the 3′ end of the miRNA guide strand and the 5′ end of the target site enhance gene silencing by AGO2. Several functionally important amino acid residues of AGO2 have been identified that affect its small RNA loading, cleavage activity, translational repression potential and antiviral activity. The data presented here help us to understand how AGO2 aids plants to deal with stress.  相似文献   

7.
8.
In homozygous mice bearing I regions derived from haplotype k, only a single type of Ia molecule bearing the alloantigenic specificities Ia.7 and Ia.22 was found using techniques of sequential immune precipitation and tryptic peptide analysis. As suggested at the fourth Ir Gene Workshop (Sachs 1978), Ia.7 is considered here to be an antigenic determinant associated with I-E-subregion-encoded molecules, i.e., it is excluded from the I-C subregion. The I-C subregion is currently defined mainly by functional traits. It is now known that the I-E molecules are composed of an alpha chain encoded in the I-E subregion, and a beta chain encoded in the I-A subregion. Since the I-C subregion is not involved with the determination of these Ia molecules, and since in homozygotes there is apparently only a single type of molecule bearing both specificities Ia.7 and Ia.22, the term "I-E/C" molecule should probably be dropped in favor of the simpler designation I-E.  相似文献   

9.
10.
The molecular basis of retinoid absorption: a genetic dissection   总被引:2,自引:0,他引:2  
The intestine and other tissues are able to synthesize retinyl esters in an acyl-CoA-dependent manner involving an acyl-CoA:retinol acyltransferase (ARAT). However, the molecular identity of this ARAT has not been established. Recent studies of lecithin:retinol acyltransferase (LRAT)-deficient mice indicate that LRAT is responsible for the preponderance of retinyl ester synthesis in the body, aside from in the intestine and adipose tissue. Our present studies, employing a number of mutant mouse models, identify diacylglycerol acyltransferase 1 (DGAT1) as an important intestinal ARAT in vivo. The contribution that DGAT1 makes to intestinal retinyl ester synthesis becomes greater when a large pharmacologic dose of retinol is administered by gavage to mice. Moreover, when large retinol doses are administered another intestinal enzyme(s) with ARAT activity becomes apparent. Surprisingly, although DGAT1 is expressed in adipose tissue, DGAT1 does not catalyze retinyl ester synthesis in adipose tissue in vivo. Our data also establish that cellular retinol-binding protein, type II (CRBPII), which is expressed solely in the adult intestine, in vivo channels retinol to LRAT for retinyl ester synthesis. Contrary to what has been proposed in the literature based on in vitro studies, CRBPII does not directly prevent retinol from being acted upon by DGAT1 or other intestinal ARATs in vivo.  相似文献   

11.
The human cytomegalovirus (HCMV) gene product US11 dislocates MHC I heavy chains from the endoplasmic reticulum (ER) and targets them for proteasomal degradation in the cytosol. To identify the structural and functional domains of US11 that mediate MHC class I molecule degradation, we constructed truncated mutants and chimeric proteins, and analyzed these to determine their intracellular localization and their ability to degrade MHC class I molecules. We found that only the luminal domain of US11 was essential to confer ER localization to the protein but that the ability to degrade MHC class I molecules required both the transmembrane domain and the luminal domain of US11. By analyzing a series of point mutants of the transmembrane domain, we were also able to identify Gln(192) and Gly(196) as being crucial for the functioning of US11, suggesting that these residues may play a critical role in interacting with the components of the protein degradation machinery.  相似文献   

12.
13.
RNase T1 is the best known representative of a large family of ribonucleolytic proteins secreted by fungi, mostly Aspergillus and Penicillium species. Ribotoxins stand out among them by their cytotoxic character. They exert their toxic action by first entering the cells and then cleaving a single phosphodiester bond located within a universally conserved sequence of the large rRNA gene, known as the sarcin-ricin loop. This cleavage leads to inhibition of protein biosynthesis, followed by cellular death by apoptosis. Although no protein receptor has been found for ribotoxins, they preferentially kill cells showing altered membrane permeability, such as those that are infected with virus or transformed. Many steps of the cytotoxic process have been elucidated at the molecular level by means of a variety of methodological approaches and the construction and purification of different mutant versions of these ribotoxins. Ribotoxins have been used for the construction of immunotoxins, because of their cytotoxicity. Besides this activity, Aspf1, a ribotoxin produced by Aspergillus fumigatus, has been shown to be one of the major allergens involved in allergic aspergillosis-related pathologies. Protein engineering and peptide synthesis have been used in order to understand the basis of these pathogenic mechanisms as well as to produce hypoallergenic proteins with potential diagnostic and immunotherapeutic applications.  相似文献   

14.
The interaction between the clonally selected TCR, the processed Ag peptide and the Ia molecule is not fully understood in molecular terms. Our study intended to delineate the residues of Ab alpha molecules that function as contact sites for Ag and for the TCR of a panel of T cells specific for the A chain of insulin in combination with mixed haplotype Ab alpha:Ak beta molecules. Multiple L cell transfectants expressing alpha,beta-heterodimers composed of wild-type A beta- and chimeric or mutant A alpha-chains served as antigen presenting cells. The recombinant A alpha-chains had been generated by an exchange of allelically hypervariable regions (ahv) or amino acids. The results point out a broad spectrum of b sequence requirements for the bovine insulin-specific activation of the various T cell populations. Activation of some T cells seemed quite permissive, requiring b-haplotype amino acids in any one of the three ahv, while others had strict requirements, demanding b-haplotype sequence in all three ahv. Our data stress the role of ahvII and especially ahvIII in T cell activation. Interestingly, single amino-acid substitutions in ahvII or ahvIII of Ak alpha were sufficient to bring up full stimulation potential for two T cell hybridomas. We also found that some ahv permutations influenced the Ag preference (beef insulin versus pig insulin) of some T cells. These data suggest a critical role for the three-dimensional structure of the complex formed by Ia and the processed Ag peptide. The stability of the trimolecular complex essential for T cell activation is envisioned as being the sum of the interactions between Ag/I-A, TCR/Ag, and TCR/I-A, each variable in strength and compensated for by the others.  相似文献   

15.
A molecular dissection of the glycoprotein hormone receptors   总被引:11,自引:0,他引:11  
In glycoprotein hormone receptors, a subfamily of rhodopsin-like G protein-coupled receptors, the recognition and activation steps are carried out by separate domains of the proteins. Specificity of recognition of the hormones thyrotropin (TSH), lutropin (LH), human chorionic gonadotropin (hCG) and follitropin (FSH) involves leucine-rich repeats (LRRs) present in an N-terminal ectodomain, and can be associated with a limited number of residues at key positions of the LRRs. The mechanism by which binding of the hormones results in activation is proposed to involve switching of the ectodomain from a tethered inverse agonist to a full agonist of the serpentine, rhodopsin-like region of the receptor. Unexpectedly, the picture is complicated by the observation that promiscuous activation of one of the receptors (FSHr) by hCG or TSH can result from activating mutations affecting the serpentine region of the receptors.  相似文献   

16.
Previous studies have implicated the DE-1 (-111/-106) and alpha A-CRYBP1 (-66/-57) sites for activity of the mouse alpha A-crystallin promoter in transiently transfected lens cells. Here we have used the bacterial chloramphenicol acetyltransferase (CAT) reporter gene to test the functional importance of the putative DE-1 and alpha A-CRYBP1 regulatory elements by site-specific and deletion mutagenesis in stably transformed alpha TN4-1 lens cells and in transgenic mice. FVB/N and C57BL/6 x SJL F2 hybrid transgenic mice were assayed for CAT activity in the lens, heart, lung, kidney, spleen, liver, cerebrum, and muscle. F0, F1, and F2 mice from multiple lines carrying single mutations of the DE-1 or alpha A-CRYBP1 sites showed high levels of CAT activity in the lens, but not in any of the non-lens tissues. By contrast, despite activity of the wild-type promoter, none of the mutant promoter/CAT constructs were active in the transiently transfected and stably transformed lens cells. The mice carrying transgenes with either site-specific mutations in both the DE-1 and alpha A-CRYBP1 sites or a deletion of the entire DE-1 and part of the alpha A-CRYBP1 site (-60/+46) fused to the CAT gene did not exhibit CAT activity above background in any of the tissues examined, including the lens. Our results thus indicate that the DE-1 and alpha A-CRYBP1 sites are functionally redundant in transgenic mice. Moreover, the present data coupled with previous transfection and transgenic mouse experiments suggest that this functional redundancy is confined to lens expression within the mouse and is not evident in transiently transfected and stably transformed lens cells, making the cultured lens cells sensitive indicators of functional elements of crystallin genes.  相似文献   

17.
18.
19.
Our data demonstrate that the uptake of surface Ia into an intracellular compartment of B lymphoma or normal spleen cells is limited to about 20% after 2 to 3 h. The extent of internalization does not vary with several types of stimulation, including LPS, phorbol esters, anti-Ig-plus phorbol ester-stimulated EL-4 T cell supernatant, and Con A supernatant. Resting and activated B cells had similar rates of internalization. The rate and extent of uptake of surface Ia molecules into an intracellular compartment was monitored quantitatively through the use of a mAb radiolabeled with 125I. The internalization of Ia molecules was compared to that of transferrin receptor, a receptor that undergoes rapid internalization and recycling and accumulates in a intracellular pool that can be trapped by monensin. The internalization of Ia was not affected by monensin, although its synthetic pathway is disturbed by this drug. The potential use of internalized Ia for formation of T cell-triggering complexes of Ia and Ag fragments is not ruled out by these data, but it appears unlikely that internalization provides the major mechanism permitting Ia interaction with Ag.  相似文献   

20.
Functional dissection of a HECT ubiquitin E3 ligase   总被引:1,自引:0,他引:1  
Ubiquitination is one of the most prevalent protein post-translational modifications in eukaryotes, and its malfunction is associated with a variety of human diseases. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitination remain largely unknown. Here we used a combination of yeast proteome chip assays, genetic screening, and in vitro/in vivo biochemical analyses to identify and characterize eight novel in vivo substrates of the ubiquitinating enzyme Rsp5, a homolog of the human ubiquitin-ligating enzyme Nedd4, in yeast. Our analysis of the effects of a deubiquitinating enzyme, Ubp2, demonstrated that an accumulation of Lys-63-linked polyubiquitin chains results in processed forms of two substrates, Sla1 and Ygr068c. Finally we showed that the localization of another newly identified substrate, Rnr2, is Rsp5-dependent. We believe that our approach constitutes a paradigm for the functional dissection of an enzyme with pleiotropic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号