首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Glycans are known to play important roles in vertebrate development; however, it is difficult to analyze in mammals because it takes place in utero. Therefore, we used medaka (Oryzias latipes) to clarify the roles of glycans during vertebrate development. β-1,4-Galactosyltransferase is one of the key enzymes in the biosynthesis of the lactosamine structures that are commonly found on glycoproteins and glycolipids. Here, we show the essential role of β4GalT2 during medaka development. Depletion of β4GalT2 by morpholino antisense oligonucleotide injection resulted in significant morphological defects, such as shortening of the anterior-posterior axis, cyclopia, impaired somite segmentation, and head hypoplasia. In situ hybridization analyses revealed that the loss of β4GalT2 led to defective anterior-posterior axis elongation during gastrulation without affecting organizer formation. Furthermore, a cell tracing experiment demonstrated that β4GalT2 knockdown mainly affects mediolateral cell intercalation, which contributes to anterior-posterior axis elongation. A cell transplantation experiment indicated that glycans are produced by β4GalT2 cell-autonomously during gastrulation. β4GalT2 depletion also led to enhanced apoptosis; however, this does not account for the phenotypic abnormalities, as blockade of apoptosis failed to compensate for the β4GalT2 depletion. Our data suggest that β4GalT2 activity is cell-autonomously required in cells undergoing mediolateral cell intercalation, which drives extension movements during medaka gastrulation.  相似文献   

3.
In Xenopus and zebrafish embryos, elongation of the anterior-posterior body axis depends on convergent extension, a process that involves polarized cell movements and is regulated by non-canonical Wnt signaling. The mechanisms that control axis elongation of the mouse embryo are much less well understood. Here, we characterize the ENU-induced mouse mutation chato, which causes arrest at midgestation and defects characteristic of convergent extension mutants, including a shortened body axis, mediolaterally extended somites and an open neural tube. The chato mutation disrupts Zfp568, a Krüppel-associated box (KRAB) domain zinc-finger protein. Morphometric analysis revealed that the definitive endoderm of mouse wild-type embryos undergoes cell rearrangements that lead to convergent extension during early somite stages, and that these cell rearrangements fail in chato embryos. Although non-canonical Wnt signaling is important for convergent extension in the mouse notochord and neural plate, the results indicate that chato regulates body axis elongation in all embryonic tissues through a process independent of non-canonical Wnt signaling.  相似文献   

4.
During vertebrate gastrulation, mesodermal and ectodermal cells undergo convergent extension, a process characterised by prominent cellular rearrangements in which polarised cells intercalate along the medio-lateral axis leading to elongation of the antero-posterior axis. Recently, it has become evident that a noncanonical Wnt/Frizzled (Fz)/Dishevelled (Dsh) signalling pathway, which is related to the planar-cell-polarity (PCP) pathway in flies, regulates convergent extension during vertebrate gastrulation. Here we isolate and functionally characterise a zebrafish homologue of Drosophila prickle (pk), a gene that is implicated in the regulation of PCP. Zebrafish pk1 is expressed maternally and in moving mesodermal precursors. Abrogation of Pk1 function by morpholino oligonucleotides leads to defective convergent extension movements, enhances the silberblick (slb)/wnt11 and pipetail (Ppt)/wnt5 phenotypes and suppresses the ability of Wnt11 to rescue the slb phenotype. Gain-of-function of Pk1 also inhibits convergent extension movements and enhances the slb phenotype, most likely caused by the ability of Pk1 to block the Fz7-dependent membrane localisation of Dsh by downregulating levels of Dsh protein. Furthermore, we show that pk1 interacts genetically with trilobite (tri)/strabismus to mediate the caudally directed migration of cranial motor neurons and convergent extension. These results indicate that, during zebrafish gastrulation Pk1 acts, in part, through interaction with the noncanonical Wnt11/Wnt5 pathway to regulate convergent extension cell movements, but is unlikely to simply be a linear component of this pathway. In addition, Pk1 interacts with Tri to mediate posterior migration of branchiomotor neurons, probably independent of the noncanonical Wnt pathway.  相似文献   

5.
Convergent extension (CE) cell movements during gastrulation mediate extension of the anterior-posterior body axis of vertebrate embryos. Non-canonical Wnt5 and Wnt11 signalling is essential for normal CE movements in vertebrate gastrulation. Here, we show that morpholino (MO)-mediated double knock-down of the Fyn and Yes tyrosine kinases in zebrafish embryos impaired normal CE cell movements, resembling the silberblick and pipetail mutants, caused by mutations in wnt11 and wnt5, respectively. Co-injection of Fyn/Yes- and Wnt11- or Wnt5-MO was synergistic, but wnt11 or wnt5 RNA did not rescue the Fyn/Yes knockdown or vice versa. Remarkably, active RhoA rescued the Fyn/Yes knockdown as well as the Wnt11 knockdown, indicating that Fyn/Yes and Wnt11 signalling converged on RhoA. Our results show that Fyn and Yes act together with non-canonical Wnt signalling via RhoA in CE cell movements during gastrulation.  相似文献   

6.
Lou Q  He J  Hu L  Yin Z 《Biochimica et biophysica acta》2012,1823(5):1024-1032
It has been suggested that mouse lbx1 is essential for directing hypaxial myogenic precursor cell migration. In zebrafish, the expression of lbx1a, lbx1b, and lbx2 has been observed in pectoral fin buds. It has also been shown that knocking down endogenous lbx2 in zebrafish embryos diminishes myoD expression in the pectoral fin bud. However, downstream lbxs signals remain largely unexplored. Here, we describe a previously unknown function of zebrafish lbx2 (lbx2) during convergent extension (CE) movements. The abrogation of the lbx2 function by two non-overlapping morpholino oligonucleotides (MOs) resulted in the defective convergence and extension movements in morphants during gastrulation. Our transplantation studies further demonstrated that the overexpression of lbx2 autonomously promotes CE movements. Expression of wnt5b is significantly reduced in lbx2 morphants. We have demonstrated that application of the wnt5b MO, a dominant-negative form of disheveled (Dvl) and a chemical inhibitor of Rho-associated kinase Y27632 in zebrafish embryos have effects reminiscent that are of the CE and hypaxial myogenesis defects observed in lbx2 morphants. Moreover, the CE and hypaxial mesoderm defects seen in lbx2 morphants can be rescued by co-injection with wnt5b or RhoA mRNA. However, this reduced level of active RhoA and hypaxial myogenesis defects in the embryos injected with the dominant-negative form of Dvl mRNA cannot be effectively restored by co-injection with lbx2 mRNA. Our results suggest that the key noncanonical Wnt signaling components Wnt5, Dvl, and RhoA are downstream effectors involved in the regulative roles of lbx2 in CE movement and hypaxial myogenesis during zebrafish embryogenesis.  相似文献   

7.
8.
Lai SL  Chan TH  Lin MJ  Huang WP  Lou SW  Lee SJ 《PloS one》2008,3(10):e3439
Intensive cellular movements occur during gastrulation. These cellular movements rely heavily on dynamic actin assembly. Rho with its associated proteins, including the Rho-activated formin, Diaphanous, are key regulators of actin assembly in cellular protrusion and migration. However, the function of Diaphanous in gastrulation cell movements remains unclear. To study the role of Diaphanous in gastrulation, we isolated a partial zebrafish diaphanous-related formin 2 (zdia2) clone with its N-terminal regulatory domains. The GTPase binding domain of zDia2 is highly conserved compared to its mammalian homologues. Using a yeast two-hybrid assay, we showed that zDia2 interacts with constitutively-active RhoA and Cdc42. The zdia2 mRNAs were ubiquitously expressed during early embryonic development in zebrafish as determined by RT-PCR and whole-mount in situ hybridization analyses. Knockdown of zdia2 by antisense morpholino oligonucleotides (MOs) blocked epiboly formation and convergent extension in a dose-dependent manner, whereas ectopic expression of a human mdia gene partially rescued these defects. Time-lapse recording further showed that bleb-like cellular processes of blastoderm marginal deep marginal cells and pseudopod-/filopod-like processes of prechordal plate cells and lateral cells were abolished in the zdia2 morphants. Furthermore, zDia2 acts cell-autonomously since transplanted zdia2-knockdown cells exhibited low protrusive activity with aberrant migration in wild type host embryos. Lastly, co-injection of antisense MOs of zdia2 and zebrafish profilin I (zpfn 1), but not zebrafish profilin II, resulted in a synergistic inhibition of gastrulation cell movements. These results suggest that zDia2 in conjunction with zPfn 1 are required for gastrulation cell movements in zebrafish.  相似文献   

9.
Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior–posterior and dorsal–ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation.  相似文献   

10.
11.
During vertebrate development, signaling by the TGFbeta ligand Nodal is critical for mesoderm formation, correct positioning of the anterior-posterior axis, normal anterior and midline patterning, and left-right asymmetric development of the heart and viscera. Stimulation of Alk4/EGF-CFC receptor complexes by Nodal activates Smad2/3, leading to left-sided expression of target genes that promote asymmetric placement of certain internal organs. We identified Ttrap as a novel Alk4- and Smad3-interacting protein that controls gastrulation movements and left-right axis determination in zebrafish. Morpholino-mediated Ttrap knockdown increases Smad3 activity, leading to ectopic expression of snail1a and apparent repression of e-cadherin, thereby perturbing cell movements during convergent extension, epiboly and node formation. Thus, although the role of Smad proteins in mediating Nodal signaling is well-documented, the functional characterization of Ttrap provides insight into a novel Smad partner that plays an essential role in the fine-tuning of this signal transduction cascade.  相似文献   

12.
Ptenb mediates gastrulation cell movements via Cdc42/AKT1 in zebrafish   总被引:1,自引:0,他引:1  
Yeh CM  Liu YC  Chang CJ  Lai SL  Hsiao CD  Lee SJ 《PloS one》2011,6(4):e18702
Phosphatidylinositol 3-kinase (PI3 kinase) mediates gastrulation cell migration in zebrafish via its regulation of PIP(2)/PIP(3) balance. Although PI3 kinase counter enzyme PTEN has also been reported to be essential for gastrulation, its role in zebrafish gastrulation has been controversial due to the lack of gastrulation defects in pten-null mutants. To clarify this issue, we knocked down a pten isoform, ptenb by using anti-sense morpholino oligos (MOs) in zebrafish embryos and found that ptenb MOs inhibit convergent extension by affecting cell motility and protrusion during gastrulation. The ptenb MO-induced convergence defect could be rescued by a PI3-kinase inhibitor, LY294002 and by overexpressing dominant negative Cdc42. Overexpression of human constitutively active akt1 showed similar convergent extension defects in zebrafish embryos. We also observed a clear enhancement of actin polymerization in ptenb morphants under cofocal microscopy and in actin polymerization assay. These results suggest that Ptenb by antagonizing PI3 kinase and its downstream Akt1 and Cdc42 to regulate actin polymerization that is critical for proper cell motility and migration control during gastrulation in zebrafish.  相似文献   

13.
The Netrin receptor Deleted in colon cancer (Dcc) has been shown to play a pivotal role in the guidance of nascent axons towards the ventral midline in the developing nervous systems of both vertebrates and invertebrates. In contrast, the function during embryogenesis of a second Dcc-like Netrin receptor Neogenin has not yet been defined. We used antisense morpholino oligonucleotides to knockdown Neogenin activity in zebrafish embryos and demonstrate that Neogenin plays an important role in neural tube formation and somitogenesis. In Neogenin knockdown embryos, cavitation within the neural rod failed to occur, producing a neural tube lacking a lumen. Somite formation was also defective, implicating Neogenin in the migration events underlying convergent extension during gastrulation. These observations suggest a role for Neogenin in determining cell polarity or migrational directionality of both neuroectodermal and mesodermal cells during early embryonic development.  相似文献   

14.
15.
E-cadherin is a member of the classical cadherin family and is known to be involved in cell-cell adhesion and the adhesion-dependent morphogenesis of various tissues. We isolated a zebrafish mutant (cdh1(rk3)) that has a mutation in the e-cadherin/cdh1 gene. The mutation rk3 is a hypomorphic allele, and the homozygous mutant embryos displayed variable phenotypes in gastrulation and tissue morphogenesis. The most severely affected embryos displayed epiboly delay, decreased convergence and extension movements, and the dissociation of cells from the embryos, resulting in early embryonic lethality. The less severely affected embryos survived through the pharyngula stage and showed flattened anterior neural tissue, abnormal positioning and morphology of the hatching gland, scattered trigeminal ganglia, and aberrant axon bundles from the trigeminal ganglia. Maternal-zygotic cdh1(rk3) embryos displayed epiboly arrest during gastrulation, in which the enveloping layer (EVL) and the yolk syncytial layer but not the deep cells (DC) completed epiboly. A similar phenotype was observed in embryos that received antisense morpholino oligonucleotides (cdh1MO) against E-cadherin, and in zebrafish epiboly mutants. Complementation analysis with the zebrafish epiboly mutant weg suggested that cdh1(rk3) is allelic to half baked/weg. Immunohistochemistry with an anti-beta-catenin antibody and electron microscopy revealed that adhesion between the DCs and the EVL was mostly disrupted but the adhesion between DCs was relatively unaffected in the MZcdh1(rk3) mutant and cdh1 morphant embryos. These data suggest that E-cadherin-mediated cell adhesion between the DC and EVL plays a role in the epiboly movement in zebrafish.  相似文献   

16.
The large extracellular polysaccharide Hyaluronan (HA) and its synthesizing enzymes (Has) have been implicated in regulating the migratory potential of metastatic cancer cells. Here, we analyze the roles of zebrafish Has2 in normal development. Antisense morpholino oligonucleotide (MO)-mediated knockdown of zebrafish Has2 leads to the loss of HA, and severe migratory defects during gastrulation, somite morphogenesis and primordial germ cell migration. During gastrulation, ventrolateral cells of has2 morphant embryos fail to develop lamellipodia and to migrate dorsally, resulting in a blockage of dorsal convergence, whereas extension of the dorsal axis is normal. The effect is cell autonomous, suggesting that HA acts as an autocrine signal to stimulate the migration of HA-generating cells. Upon ectopic expression in axial cells, has2 causes the formation of supernumerary lamellipodia and a blockage of axis extension. Epistasis analyses with constitutively active and dominant-negative versions of the small GTPase Rac1 suggest that HA acts by Rac1 activation, rather than as an essential structural component of the extracellular matrix. Together, our data provide evidence that convergence and extension are separate morphogenetic movements of gastrulation. In addition, they suggest that the same HA pathways are active to auto-stimulate cell migration during tumor invasion and vertebrate embryogenesis.  相似文献   

17.
Involving dynamic and coordinated cell movements that cause drastic changes in embryo shape, gastrulation is one of the most important processes of early development. Gastrulation proceeds by various types of cell movements, including convergence and extension, during which polarized axial mesodermal cells intercalate in radial and mediolateral directions and thus elongate the dorsal marginal zone along the anterior-posterior axis [1,2]. Recently, it was reported that a noncanonical Wnt signaling pathway, which is known to regulate planar cell polarity (PCP) in Drosophila [3,4], participates in the regulation of convergent extension movements in Xenopus as well as in the zebrafish embryo [5-8]. The Wnt5a/Wnt11 signal is mediated by members of the seven-pass transmembrane receptor Frizzled (Fz) and the signal transducer Dishevelled (Dsh) through the Dsh domains that are required for the PCP signal [6-8]. It has also been shown that the relocalization of Dsh to the cell membrane is required for convergent extension movements in Xenopus gastrulae. Although it appears that signaling via these components leads to the activation of JNK [9,10] and rearrangement of microtubules, the precise interplay among these intercellular components is largely unknown. In this study, we show that Xenopus prickle (Xpk), a Xenopus homolog of a Drosophila PCP gene [11-13], is an essential component for gastrulation cell movement. Both gain-of-function and loss-of-function of Xpk severely perturbed gastrulation and caused spina bifida embryos without affecting mesodermal differentiation. We also demonstrate that XPK binds to Xenopus Dsh as well as to JNK. This suggests that XPK plays a pivotal role in connecting Dsh function to JNK activation.  相似文献   

18.
Antisense oligonucleotides are commonly employed to study the roles of genes in development. Although morpholino phosphorodiamidate oligonucleotides (morpholinos) are widely used to block translation or splicing of target gene products' the usefulness of other modifications in mediating RNase-H independent inhibition of gene activity in embryos has not been investigated. In this study, we investigated the extent that fully modified 2'-O-methyl oligonucleotides (2'-OMe oligos) that can function as translation inhibiting reagents in vivo, using Xenopus and zebrafish embryos. We find that oligos against Xenopus β-catenin, wnt11, and bmp4 and against zebrafish chordin (chd), which can efficiently and specifically generate embryonic loss-of-function phenotypes comparable with morpholino injection and other methods. These results show that fully modified 2'-OMe oligos can function as RNase-H independent antisense reagents in vertebrate embryos and can thus serve as an alternative modification to morpholinos in some cases.  相似文献   

19.
The receptor-tyrosine kinase Ror2 acts as an alternative receptor or co-receptor for Wnt5a and mediates Wnt5a-induced convergent extension movements during embryogenesis in mice and Xenopus as well as the polarity and migration of several cell types during development. However, little is known about whether Ror2 function is conserved in other vertebrates or is involved in other non-canonical Wnt ligands in vivo. In this study we demonstrated that overexpression of dominant-negative ror2 (ror2-TM) mRNA in zebrafish embryos resulted in convergence and extension defects and incompletely separated eyes, which is consistent with observations from slb/wnt11 mutants or wnt11 knockdown morphants. Moreover, the co-injection of ror2-TM mRNA and a wnt11 morpholino or the coexpression of ror2 and wnt11 in zebrafish embryos synergetically induced more severe convergence and extension defects. Transplantation studies further demonstrated that the Ror2 receptor responded to the Wnt11 ligand and regulated cell migration and cell morphology during gastrulation. DnRor2 inhibited the action of Wnt11, which was revealed by a decreased percentage of Wnt11-induced convergence and extension defects. Ror2 physically interacts with Wnt11. The intracellular Tyr-647 and Ser-863 sites of Ror2 are essential for mediating the action of Wnt11. Dishevelled and RhoA act downstream of Wnt11-Ror2 to regulate convergence and extension movements. Overall, our data suggest an important role of Ror2 in mediating Wnt11 signaling and in regulating convergence and extension movements in zebrafish.  相似文献   

20.
Cell movements during epiboly and gastrulation in zebrafish   总被引:12,自引:0,他引:12  
Beginning during the late blastula stage in zebrafish, cells located beneath a surface epithelial layer of the blastoderm undergo rearrangements that accompany major changes in shape of the embryo. We describe three distinctive kinds of cell rearrangements. (1) Radial cell intercalations during epiboly mix cells located deeply in the blastoderm among more superficial ones. These rearrangements thoroughly stir the positions of deep cells, as the blastoderm thins and spreads across the yolk cell. (2) Involution at or near the blastoderm margin occurs during gastrulation. This movement folds the blastoderm into two cellular layers, the epiblast and hypoblast, within a ring (the germ ring) around its entire circumference. Involuting cells move anteriorwards in the hypoblast relative to cells that remain in the epiblast; the movement shears the positions of cells that were neighbors before gastrulation. Involuting cells eventually form endoderm and mesoderm, in an anterior-posterior sequence according to the time of involution. The epiblast is equivalent to embryonic ectoderm. (3) Mediolateral cell intercalations in both the epiblast and hypoblast mediate convergence and extension movements towards the dorsal side of the gastrula. By this rearrangement, cells that were initially neighboring one another become dispersed along the anterior-posterior axis of the embryo. Epiboly, involution and convergent extension in zebrafish involve the same kinds of cellular rearrangements as in amphibians, and they occur during comparable stages of embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号