首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flocculent killer yeast, Saccharomyces cerevisiae strain H-1, which was selected for ethanol fermentation of beet molasses, has a tendency to lose its viability in distillery waste water (DWW) of beet molasses mash after ethanol fermentation. Through acclimations of strain H-1 in DWW, strain W-9, resistant to DWW, was isolated. Strain M-9, resistant to 2-deoxyglucose was further isolated through acclimations of strain W-9 in medium containing 150 ppm 2-deoxyglucose. A fermentation test of beet molasses indicated that the ethanol productivity and sugar consumption were improved by strain M-9 compared to the parental strain H-1 and strain W-9. The concentration of ethanol produced by strain M-9 was 107.2 g/l, and the concentration of residual sugars, which were mainly composed of sucrose and fructose, were lower than those produced by the parental strain H-1 and strain W-9 at the end of fermentation of beet molasses.  相似文献   

2.
Alkaline-oxidative (A/O) pretreatment and enzymatic saccharification were optimized for bioethanol fermentation from water hyacinth by Saccharomyces cerevisiae. Water hyacinth was subjected to A/O pretreatment at various NaOH and H(2)O(2) concentrations and reaction temperatures for the optimization of bioethanol fermentation by S. cerevisiae. The most effective condition for A/O pretreatment was 7% (w/v) NaOH at 100 °C and 2% (w/v) H(2)O(2). The carbohydrate content was analyzed after reaction at various enzyme concentrations and enzyme ratios using Celluclast 1.5 L and Viscozyme L to determine the effective conditions for enzymatic saccharification. After ethanol fermentation using S. cerevisiae KCTC 7928, the concentration of glucose, ethanol and glycerol was analyzed by HPLC using a RI detector. The yield of ethanol in batch fermentation was 0.35 g ethanol/g biomass. Continuous fermentation was carried out at a dilution rate of 0.11 (per h) and the ethanol productivity was 0.77 [g/(l h)].  相似文献   

3.
Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida’s climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as “operational plant density,” a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yields were found to be 106, 72, and41 t(drywt)ha-1yr-1, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500–2,000 g dry wt m-2 for water hyacinth, 200–700 g dry wt m-2 for water lettuce, and 250–650 g dry wt m-2 for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.  相似文献   

4.
The direct fermentation of cellulosic biomass to ethanol has long been a desired goal. To this end, we screened the environment for fungal strains capable of this conversion when grown on minimal medium. One strain, identified as a member of the genus Trichoderma and designated strain A10, was isolated from cow dung and initially produced about 0.4 g ethanol l(-1). This strain cannot grow on any substrate under anaerobic conditions, but can ferment microcrystalline cellulose or several sugars to ethanol. Ethanol accumulation was eventually increased, by selection and the use of a vented fermentation flask, to 2 g l(-1) when the fermentation was carried out in submerged culture in minimal medium. The highest levels of ethanol, >5.0 g l(-1), were obtained by the fermentation of glucose. Little ethanol was produced by the fermentation of xylose, although other fermentation products such as succinate and acetate were observed. Strain A10 was also found to utilize (aerobically) a wide range of carbon sources. In addition, auxotrophic mutants were generated and used to demonstrate parasexuality by complementation between auxotrophs and between morphological mutants. The ability of this strain to use a wide variety of carbohydrates (including crystalline cellulose) combined with its minimal nutrient requirements and the availability of a genetic system suggests that the strain merits further investigation of its ability to convert biomass to ethanol.  相似文献   

5.
The Antarctic basidiomycetous yeast Mrakia blollopis SK-4 can quite uniquely ferment various sugars under low temperature conditions. When strain SK-4 fermented lignocellulosic biomass using the direct ethanol fermentation (DEF) technique, approximately 30% to 65% of the theoretical ethanol yield was obtained without and with the addition of the non-ionic surfactant Tween 80, respectively. Therefore, DEF from lignocellulosic biomass with M. blollopis SK-4 requires the addition of a non-ionic surfactant to improve fermentation efficiency. DEF with lipase converted Eucalyptus and Japanese cedar to 12.6 g/l, and 14.6 g/l ethanol, respectively. In the presence of 1% (v/v) Tween 80 and 5 U/g-dry substrate lipase, ethanol concentration increased about 1.4- to 2.4-fold compared to that without Tween 80 and lipase. We therefore consider that the combination of M. blollopis SK-4 and DEF with Tween 80 and lipase has good potential for ethanol fermentation in cold environments.  相似文献   

6.
In this study, enzymatic hydrolysis of two floating aquatic plants which are suitable for water purification, water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.), was performed to produce sugars. Twenty chemical pretreatments were comparatively examined in order to improve the efficiency of enzymatic hydrolysis. As a result, the alkaline/oxidative (A/O) pretreatment, in which sodium hydroxide and hydrogen peroxide were used, was the most effective pretreatment in terms of improving enzymatic hydrolysis of the leaves of water hyacinth and water lettuce. The amount of reducing sugars in enzymatic hydrolysate of water lettuce leaves was 1.8 times higher than that of water hyacinth leaves, therefore water lettuce seems to be more attractive as a biomass resource than water hyacinth. Although roots of these plants contained large amounts of polysaccharides such as cellulose and hemicellulose, they generated less monosaccharides than from leaves, no matter which chemical pretreatment was tested.  相似文献   

7.
The gene mel1, encoding alpha-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and beta-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanol-producing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular alpha-galactosidase and beta-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC 1 co-expressing 2 genes could achieve 0.29 OD600 h(-1) and a biomass yield up to 7.8 g l(-1) dry cell weight on medium containing 10.0 g l(-1) cellobiose and 10.0 g l(-1) melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG 1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l(-1) ethanol was produced from 100 g of cellulose supplied with 5 g l(-1) melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.  相似文献   

8.
9.
In the simultaneous saccharification and fermentation to ethanol of 100 g l(-1) microcrystalline cellulose, the cellobiose-fermenting recombinant Klebsiella oxytoca P2 outperformed a range of cellobiose-fermenting yeasts used in earlier work, despite producing less ethanol than reported earlier for this organism under similar conditions. The time taken by K. oxytoca P2 to produce up to about 33 g l(-1) ethanol was much less than for any other organism investigated, including ethanol-tolerant strains of Saccharomyces pastorianus, Kluyveromyces marxianus and Zymomonas mobilis. Ultimately, it produced slightly less ethanol (maximum 36 g l(-1)) than these organisms, reflecting its lower ethanol tolerance. Significant advantages were obtained by co-culturing K. oxytoca P2 with S. pastorianus, K. marxianus or Z. mobilis, either isothermally, or in conjunction with temperature-profiling to raise the cellulase activity. Co-cultures produced significantly more ethanol, more rapidly, than either of the constituent strains in pure culture at the same inoculum density. K. oxytoca P2 dominated the early stages of the co-cultures, with ethanol production in the later stages due principally to the more ethanol tolerant strain. The usefulness of K. oxytoca P2 in cellulose simultaneous saccharification and fermentation should be improved by mutation of the strain to increase its ethanol tolerance.  相似文献   

10.
Spent sulfite pulping liquor (SSL) is a high-organic content byproduct of acid bisulfite pulp manufacture which is fermented to make industrial ethanol. SSL is typically concentrated to 240 g/l (22% w/w) total solids prior to fermentation, and contains up to 24 g/l xylose and 30 g/l hexose sugars, depending upon the wood species used. The xylose present in SSL is difficult to ferment using natural xylose-fermenting yeast strains due to the presence of inhibitory compounds, such as organic acids. Using sequential batch shake flask experiments, Saccharomyces cerevisiae 259ST, which had been genetically modified to ferment xylose, was compared with the parent strain, 259A, and an SSL adapted strain, T2, for ethanol production during SSL fermentation. With an initial SSL pH of 6, without nutrient addition or SSL pretreatment, the ethanol yield ranged from 0.32 to 0.42 g ethanol/g total sugar for 259ST, compared to 0.15-0.32 g ethanol/g total sugar for non-xylose fermenting strains. For most fermentations, minimal amounts of xylitol (<1 g/l) were produced, and glycerol yields were approximately 0.12 g glycerol/g sugar consumed. By using 259ST for SSL fermentation up to 130% more ethanol can be produced compared to fermentations using non-xylose fermenting yeast.  相似文献   

11.
Acid-hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol/l sulfuric acid using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol after 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol after 18 h. The results showed that acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by it in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

12.
The acid hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol sulfuric acid per liter pyrolysate using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol in 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol in 18 h. The results showed that the acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by S. cerevisiae (R) in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

13.
To improve the economic competitiveness of the acetone/butanol/ethanol fermentation process, glucose/corn steep water (CSW) medium was used on a pilot scale for the production of solvents. The production of butanol by the Clostridium beijerinckii NCIMB 8052 parent strain and the solvent-hyperproducing BA101 mutant was compared. In a 20-l fermentation using 5% glucose/CSW medium,  C. beijerinckii 8052 produced 8.5 g butanol/l and 5 g acetone/l, while  C. beijerinckii BA101 produced 16 g butanol/l and 7.5 g acetone/l. Further studies were carried out on a larger scale using an optimized 6% glucose/CSW medium. In a 200-l pilot-scale fermentor,  C. beijerinckii 8052 produced 12.7 g butanol/l and 6 g acetone/l following 96 h of fermentation.  C. beijerinckii BA101 produced 17.8 g/l and 5.5 g/l butanol and acetone respectively, following 130 h of fermentation. These results represent a 40% increase in final butanol concentration by the C. beijerinckii BA101 mutant strain when compared to the 8052 parent strain. The total solvents (acetone, butanol, and ethanol) produced by C. beijerinckii NCIMB 8052 and BA101 in a 200-l fermentation were 19.2 g/l and 23.6 g/l respectively. This is the first report of pilot-scale butanol production by the solvent-hyperproducing C. beijerinckii BA101 mutant employing an inexpensive glucose/CSW medium. Received: 26 May 1998 / Received revision: 21 September 1998 / Accepted: 11 October 1998  相似文献   

14.
AIMS: The work is intended to explore the suitability of underutilized coconut water (a byproduct of food industry) for the production of exopolysaccharides (EPS) by Agrobacterium sp. CFR 24. METHODS AND RESULTS: Besides checking the suitability of coconut water for the production of water-soluble (WS) and water-insoluble (WIS) EPS, certain fermentation parameters, such as initial pH, incubation period and kinetics of EPS production were investigated. The coconut water medium was found to support the production of both types of EPS. The optimal initial pH and temperature was found to be 6.0 and 30 degrees C, respectively. In shake flask (150 rev min(-1)) studies, high-cell density inoculum resulted in the production of 11.50 g l(-1) of WIS-EPS and 4.01 g l(-1) WS-EPS after 72 and 96 h of fermentation, respectively. CONCLUSIONS: Coconut water was found suitable for the production of microbial EPS by Agrobacterium sp. CFR 24 strain. Under optimum conditions, it produced a good amount of WIS-EPS, which is comparable with that of the sucrose medium (11 g l(-1)). SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the use of coconut water as a fermentation medium for the production of any microbial EPS. Besides producing value-added products, use of this food industry byproduct, which is often being drained out, can significantly reduce the problem of environmental pollution.  相似文献   

15.
Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance.  相似文献   

16.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

17.
This paper elucidates the phytoremediation potential of water hyacinth and water lettuce on the reduction of wastewater toxicity. Acute toxicity tests were performed in an aquarium with a population of Sarotherodon melanotheron, contaminated by different concentrations of wastewaters before and after phytoremediation with Eichhornia crassipes and Pistia stratiotes. Lethal concentrations (LC50) of the fish's population obtained during 24 hours of exposures were determined. COD, BOD, ammonium, TKN and PO43? concentrations in wastewaters were of 1850.29, 973.33, 38.34, 61.49 and 39.23 mg L?1, respectively, for each plant. Phytoremediation reduced 58.87% of ammonium content, 50.04% of PO43?, 82.45% of COD and 84.91% of BOD. After 15 days of the experiment, metal contents in treated wastewaters decreased from 6.65 to 97.56% for water hyacinth and 3.51 to 93.51% for water lettuce tanks. Toxicity tests showed that the mortality of fish exposed increased with increase in concentration of pollutants in wastewaters and the time of exposure. Therefore, the highest value of LC50 was recorded for fish subjected to 3 hours of exposure (16.37%). The lowest rate was obtained after an exposure of 20 to 24 hours (5.85%). After phytoremediation, the effluents purified by Eichhornia crassipes can maintain the fish life beyond 24 hours of exposure.  相似文献   

18.
Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone‐butanol‐ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol‐butanol‐ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab‐scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot‐scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab‐scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1083–1088, 2013  相似文献   

19.
Kwon YJ  Wang F  Liu CZ 《Bioresource technology》2011,102(24):11262-11265
A solid state fermentation (SSF) of sweet sorghum stalk to ethanol was conducted in 250-mL flask using thermotolerant Issatchenkia orientalis IPE 100, and the optimal operation parameters were determined as 42°C fermentation temperature, 75% (w/w) water content, 2mm particle size and 3% (w/w) inoculation rate in 250-mL conical flask. When the SSF was scaled up from the flask to a 10-L bioreactor, temperature gradient in the substrate bed was observed due to heat accumulation in the bioreactor. The temperature gradient was dependent on both substrate depth and operation temperature. Due to high thermotolerance of the strain IPE 100, a deep-bed SSF of sweet sorghum stalk was developed in the bioreactor. The highest ethanol yield of 0.25 g-ethanol/g-dry stalk was obtained at 37°C with 15-20 cm substrate depth in the bioreactor. These results provided a great potential for large-scale deep-bed SSF in practice.  相似文献   

20.
Of the four thermotolerant, osmotolerant, flocculating yeasts (VS1, VS2, VS3 and VS4) isolated from the soil samples collected within the hot regions of Kothagudem Thermal Power Plant, located in Khammam Dt., Andhra Pradesh, India, VS1 and VS3 were observed as better performers. They were identified as Saccharomyces cerevisiae. VS1 and VS3 were tested for their growth characteristics and fermentation abilities on various carbon sources including molasses at 30v°C and 40v°C respectively. More biomass and fermentation was observed in sucrose, fructose and glucose. Maximum amount of ethanol produced by VS3 containing 150 (g/l) of these substrates were 74, 73, and 72 (g/l) at 30v°C and 64, 61 and 63 (g/l) at 40v°C respectively. With molasses containing 14% sugar, the amount of ethanol produced by VS3 was 53.2 and 45 (g/l) at 30v°C and 40v°C respectively. VS3 strain showed 12% W/V ethanol tolerance. VS3 strain was also characterised for its ethanol producing ability using various starchy substrates in solid state and submerged fermentation. More ethanol was produced in submerged than solid state fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号