首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The intestinal epithelium is the largest surface area of the body in contact with the external environment. This specialized single cell layer is constantly renewed and is a physical barrier that separates intestinal microbiota from underlying tissues, preventing bacterial infiltration and subsequent inflammation. Specialized secretory epithelial cell types such as Paneth cells and goblet cells limit bacterial adhesion and infiltration by secreting antibacterial peptides and mucins, respectively. Rapid cell renewal coincides with apical exfoliation of 'old' enterocytes without compromising epithelial barrier integrity. When the intestinal epithelium is inflamed barrier integrity can be compromised, due to uncontrolled death of enterocytes allowing bacterial infiltration. This review discusses the different mechanisms which regulate or affect intestinal barrier integrity under homeostatic and inflammatory conditions.  相似文献   

2.
It is now well known that endogenous bacteria can translocate from the intestinal tract and cause many of the complicating infections seen in severely ill, hospitalized patients. Of the hundreds of bacterial species in the intestinal tract, relatively few aerobic/facultative species appear to translocate with any frequency. Van der Waaij and colleagues (1971, 1972a, 1972b) originally proposed that, by a process termed colonization resistance, strictly anaerobic bacteria prevented the intestinal overgrowth and subsequent translocation of these potentially pathogenic aerobic/facultative bacteria. Selective antimicrobial decontamination, designed to maintain colonization resistance, has been effective in reducing the incidence of infectious morbidity in high risk patients. However, the mechanisms controlling bacterial translocation remain unclear, but appear to depend on host factors, as well as on factors inherent in the microbe itself. There is both clinical and experimental evidence supporting the concept that strictly anaerobic bacteria do not readily translocate. Bacteria that are able to survive within macrophages (e.g., Salmonella species and Listeria monocytogenes) translocate easier than others, and there is recent experimental evidence that normal intestinal bacteria may translocate to the draining mesenteric lymph node within host phagocytes. There is also evidence that anaerobic bacteria translocate along with facultative species in situations associated with intestinal epithelial damage, i.e., burn trauma, oral ricinoleic acid, and acute mesenteric ischemia. In contrast, recent experimental evidence demonstrates that facultative bacteria can translocate across a histologically intact intestinal epithelium, and that the ileal absorptive cell may be at least one portal of entry prior to transport into deeper tissues. It is anticipated that further clarification of the routes and mechanisms involved in bacterial translocation will provide new insights into the treatment and prevention of a significant proportion of the infectious morbidity seen in severely ill, hospitalized patients. Antoni van Leeuwenhoek Lecture presented at the Annual Meeting of the Netherlands Society of Microbiology, Utrecht, 23 November, 1989.  相似文献   

3.
Neurological manifestations caused by neuroinvading pathogens are typically attributed to penetration of the blood–brain barrier (BBB) and invasion of the central nervous system. However, the mechanisms used by many pathogens (such as Borrelia ) to traverse the BBB are still unclear. Recent studies revealed that microbial translocation across the BBB must involve a repertoire of microbial–host interactions (receptor–ligand interactions). However, the array of interacting molecules responsible for the borrelial translocation is not yet clearly known. Pathogens bind several host molecules (plasminogen, glycosaminoglycans, factor H, etc.) that might mediate endothelial interactions in vivo . This review summarizes our current understanding of the pathogenic mechanisms involved in the translocation of the BBB by neuroinvasive pathogens.  相似文献   

4.
We investigated the ability of vasoactive intestinal peptide (VIP) to cross the blood-brain barrier (BBB), the interface between the peripheral circulation and central nervous system (CNS). VIP labeled with 131I (I-VIP) and injected intravenously into mice was taken up by brain as determined by multiple-time regression analysis. Excess unlabeled VIP was unable to impede the entry of I-VIP, indicating that passage is by nonsaturable transmembrane diffusion. High pressure liquid chromatography (HPLC) showed the radioactivity entering the brain to be intact I-VIP. After intracerebroventricular (i.c.v.) injection, I-VIP was sequestered by brain, slowing its efflux from the CNS. In summary, VIP crosses the BBB unidirectionally from blood to brain by transmembrane diffusion.  相似文献   

5.
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.  相似文献   

6.
Using oxidant-induced hyperpermeability of monolayers of intestinal (Caco-2) cells as a model for the pathophysiology of inflammatory bowel disease (IBD), we previously showed that oxidative injury to the F-actin cytoskeleton is necessary for the disruption of monolayer barrier integrity. We hypothesized that this cytoskeletal damage is caused by upregulation of an inducible nitric oxide (NO) synthase (iNOS)-driven pathway that overproduces reactive nitrogen metabolites (RNMs) such as NO and peroxynitrite (OONO(-)), which cause actin nitration and disassembly. Monolayers were exposed to H(2)O(2) or to RNMs with and without pretreatment with antioxidants or iNOS inhibitors. H(2)O(2) concentrations that disassembled and/or disrupted the F-actin cytoskeleton and barrier integrity also caused rapid iNOS activation, NO overproduction, and actin nitration. Added OONO(-) mimicked H(2)O(2); iNOS inhibitors and RNM scavengers were protective. Our results show that oxidant-induced F-actin and intestinal barrier disruption are caused by rapid iNOS upregulation that further increases oxidant levels; a similar positive feedback mechanism may underlie the episodic recurrence of the acute IBD attack. Confirming these mechanisms in vivo would provide a rationale for developing novel anti-RNM therapies for IBD.  相似文献   

7.
《Cellular signalling》2014,26(4):806-814
Toll-like receptor 2 (TLR2) is involved in phagocytosis and autophagy to enhance host innate immune response to bacterial infection. TLR2 has been reported to participate in the recognition of Staphylococcus aureus (S. aureus). However, the role of TLR2 in phagocytosis and autophagy in S. aureus-stimulated macrophages and the underlying mechanisms as yet remain unclear. In the present study, stimulation of mouse macrophage cell line RAW264.7 with S. aureus activated multiple signaling pathways including mitogen-activated protein kinases (MAPKs), myeloid differentiation factor 88 (MyD88), phosphatidylinositide 3-kinase (PI3K) and Rac1 and triggered autophagy process. Knockdown of TLR2 by siRNA significantly reduced phagocytosis and autophagy of macrophages upon S. aureus infection. Interestingly, TLR2 siRNA markedly attenuated S. aureus-induced phosphorylation of c-Jun N-terminal kinase (JNK) but not p38 or extracellular regulated protein kinase (ERK) in macrophages. Similarly, SP600125, a JNK inhibitor, also down-regulated phagocytosis and autophagy in S. aureus-stimulated macrophages. Furthermore, TLR2 siRNA and SP600125 simultaneous treatment showed similar phagocytosis and autophagy compared to that in TLR2 siRNA treatment alone. Collectively, our results indicate that TLR2 may be critical for phagocytosis and autophagy through JNK signaling pathway, and provide an underlying mechanistic link between innate immune receptor and induction of phagocytosis and autophagy in S. aureus-stimulated macrophages.  相似文献   

8.
Intestinal inflammatory diseases are the result of multiple processes, including mucosal oxidative stress and perturbed homeostasis between commensal bacteria and mucosal immunity. Toll-like receptors (TLRs) recognize molecular-associated microorganisms' patterns and trigger innate immunity responses contributing to intestinal homeostasis and inflammatory responses. However, TLRs effects on redox balance in intestinal mucosa remain unknown. Therefore, the present study analyzes the effect of TLR2, TLR3, and TLR4 on both oxidative damage of lipids and proteins, and the activity of antioxidant enzymes in enterocyte-like Caco-2 cells. The results show that the activation of these TLRs increased lipid and protein oxidation levels; however, the effect on the antioxidant enzymes activity is different depending on the TLR activated. These results suggest that the activation of TLR2, TLR3, and TLR4 might affect intestinal inflammation by not only their inherent innate immunity responses, but also their pro-oxidative effects on intestinal epithelial cells.  相似文献   

9.
Defective intestinal epithelial tight junction (TJ) barrier has been shown to be an important pathogenic factor contributing to the development of intestinal inflammation. The expression of occludin is markedly decreased in intestinal permeability disorders, including in Crohn's disease, ulcerative colitis, and celiac disease, suggesting that the decrease in occludin expression may play a role in the increase in intestinal permeability. The purpose of this study was to delineate the involvement of occludin in intestinal epithelial TJ barrier by selective knock down of occludin in in vitro (filter-grown Caco-2 monolayers) and in vivo (recycling perfusion of mouse intestine) intestinal epithelial models. Our results indicated that occludin small-interfering RNA (siRNA) transfection causes an increase in transepithelial flux of various-sized probes, including urea, mannitol, inulin, and dextran, across the Caco-2 monolayers, without affecting the transepithelial resistance. The increase in relative flux rate was progressively greater for larger-sized probes, indicating that occludin depletion has the greatest effect on the flux of large macromolecules. siRNA-induced knock down of occludin in mouse intestine in vivo also caused an increase in intestinal permeability to dextran but did not affect intestinal tissue transepithelial resistance. In conclusion, these results show for the first time that occludin depletion in intestinal epithelial cells in vitro and in vivo leads to a selective or preferential increase in macromolecule flux, suggesting that occludin plays a crucial role in the maintenance of TJ barrier through the large-channel TJ pathway, the pathway responsible for the macromolecule flux.  相似文献   

10.
Previous experimental studies in a standard Transwell culture system have shown Streptococcus suis ability to compromise barrier function of porcine choroid plexus epithelial cells (PCPEC). The development of an 'inverted' Transwell filter system of PCPEC enables us now for the first time to investigate bacterial invasion and translocation from the physiologically relevant basolateral (blood) to the apical (cerobrospinal fluid) side. Most importantly, we observed specific invasion and translocation of S. suis across the PCPEC exclusively from the basolateral side. During this process, bacterial viability and the presence of a capsule as well as cytoskeletal regulation of PCPEC seemed to play an important role. No loss of barrier function was observed. Bacterial translocation could be significantly inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002, but not by its inactive analogue   Ly303511 or dexamethasone. Apotome imaging as well as electron microscopy revealed intracellular bacteria often in cell vacuoles. Thus, possibly regulated by the presence of a capsule, S. suis induces signals that depend on the lipid kinase phosphatidylinositol 3-kinase pathway, which paves the way for cellular uptake during the bacterial transcellular translocation process. Taken together, our data underline the relevance of the blood–cerebrospinal fluid barrier as a gate for bacterial entry into the central nervous system.  相似文献   

11.
Chen C  Wang P  Su Q  Wang S  Wang F 《PloS one》2012,7(4):e34946

Background

Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction.

Methodology/Principal Findings

Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression.

Conclusions/Significance

The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.  相似文献   

12.
目的 探讨粪菌移植(FMT)对溃疡性结肠炎(UC)小鼠肠黏膜屏障的影响及可能机制。 方法 小鼠饮用2.0%葡聚糖硫酸钠(DSS)溶液构建小鼠UC模型;50只成年雄性C57BL/6J小鼠,随机留取10只取粪便(这10只不参与后续的实验),其余40只称重、编号,随机分为空白对照组(Con组)、DSS模型对照组(Model组)、美沙拉嗪组(Model+5ASA组)和粪菌液组(Model+FMT组),每组10只,Con组和Model组均给予0.9% NaCl溶液灌肠,给药组分别给予美沙拉嗪、粪便滤液灌肠;评估疾病活动指数(DAI)、各组结肠组织病理情况,用透射电镜检测各组小鼠的结肠黏膜上皮细胞结构的变化情况,ELISA检测各组血清内毒素、炎症因子TNFα水平变化,免疫组化法检测结肠组织Toll样受体4(TLR4)及核因子κB(NFκB)的表达变化,Western blot检测各组ZO1蛋白表达。 结果 与Model组相比,粪菌移植明显改善小鼠的DAI指数和结肠组织的病理损伤,结肠上皮细胞间隙增宽程度减轻,腺上皮细胞间连接较紧密,结肠黏膜上皮细胞微绒毛完整,排列整齐,内毒素、TNFα的含量明显下降,TLR4及NFκB在结肠组织的表达明显下降,ZO1蛋白表达明显升高,促进结肠黏膜屏障的修复,差异具有统计学意义(t=7.954 3,P结论 FMT可减少内毒素及炎症因子的产生,改善结肠炎症,TLR4NFκB信号通路可能是FMT修复结肠黏膜屏障功能的机制之一。  相似文献   

13.
14.
Traversal of pathogen across the blood-brain barrier (BBB) is an essential step for central nervous system (CNS) invasion. Pathogen traversal can occur paracellularly, transcellularly, and/or in infected phagocytes (Trojan horse mechanism). To trigger the translocation processes, mainly through paracellular and transcellular ways, interactions between protein molecules of pathogen and BBB are inevitable. Simply, it takes two to tango: both host receptors and pathogen ligands. Underlying molecular basis of BBB translocation of various pathogens has been revealed in the last decade, and a plethora of experimental data on protein-protein interactions has been created. This review compiles these data and should give insights into the ligand-receptor interactions that occur during BBB translocation. Further, it sheds light on cell signaling events triggered in response to ligand-receptor interaction. Understanding of the molecular principles of pathogen-host interactions that are involved in traversal of the BBB should contribute to develop new vaccine and drug strategies to prevent CNS infections.  相似文献   

15.
Group A Streptococcus pyogenes (GAS) is a human pathogen that causes local suppurative infections and severe invasive diseases. Systemic dissemination of GAS is initiated by bacterial penetration of the epithelial barrier of the pharynx or damaged skin. To gain insight into the mechanism by which GAS penetrates the epithelial barrier, we sought to identify both bacterial and host factors involved in the process. Screening of a transposon mutant library of a clinical GAS isolate recovered from an invasive episode allowed identification of streptolysin S (SLS) as a novel factor that facilitates the translocation of GAS. Of note, the wild type strain efficiently translocated across the epithelial monolayer, accompanied by a decrease in transepithelial electrical resistance and cleavage of transmembrane junctional proteins, including occludin and E-cadherin. Loss of integrity of intercellular junctions was inhibited after infection with a deletion mutant of the sagA gene encoding SLS, as compared with those infected with the wild type strain. Interestingly, following GAS infection, calpain was recruited to the plasma membrane along with E-cadherin. Moreover, bacterial translocation and destabilization of the junctions were partially inhibited by a pharmacological calpain inhibitor or genetic interference with calpain. Our data indicate a potential function of SLS that facilitates GAS invasion into deeper tissues via degradation of epithelial intercellular junctions in concert with the host cysteine protease calpain.  相似文献   

16.
Flow cytometry was used to observe the transport of fluorescently labelled viable bacteria in the large intestinal lumen of guinea pigs after the injection of the bacteria into the proximal colon. Bacteria were transported along the radial and longitudinal axes of the intestine and were separated from dietary residue, accumulated, and then transported back to the caecum. These observations, together with the heterogeneous distribution of bacterial species and chemical composition across and along the large intestine, suggest that there are several different microenvironments within the intestinal lumen between which bacteria and/or dietary residues move. The existence of different microenvironments within the intestinal lumen is consistent with poor mixing of the digesta within the large intestine of pigs and chickens.  相似文献   

17.
Receptor for advanced glycation endproducts (RAGE) is an Ig superfamily cell surface receptor that interacts with a diverse array of ligands associated with inflammatory responses. In this study, we provide evidence demonstrating that RAGE is involved in inflammatory responses in the intestines. We showed that RAGE is expressed in intestinal epithelial cells, primarily concentrated at the lateral membranes close to the apical cell junction complexes. Although RAGE expression was low in epithelium under normal conditions, this protein was up-regulated after treatment with the inflammatory cytokines IFN-gamma and/or TNF-alpha. RAGE expression was also elevated in colon tissue samples from patients with inflammatory bowel diseases. Using in vitro transmigration assays, we found that RAGE mediates neutrophil (polymorphonuclear leukocytes (PMN)) adhesion to, and subsequent migration across, intestinal epithelial monolayers. This activity appears to be mediated by the binding of RAGE to the PMN-specific beta(2) integrin CD11b/CD18. Thus, these results provide a novel mechanism for the regulation of PMN transepithelial migration and may suggest a new therapeutic target for intestinal inflammation.  相似文献   

18.
19.
Using monolayers of human intestinal (Caco-2) cells, we found that oxidants and ethanol damage the cytoskeleton and disrupt barrier integrity; epidermal growth factor (EGF) prevents damage by enhancement of protein kinase C (PKC) activity and translocation of the PKC-beta1 isoform. To see if PKC-beta1 mediates EGF protection, cells were transfected to stably over- or underexpress PKC-beta1. Transfected monolayers were preincubated with low or high doses of EGF (1 or 10 ng/ml) or 1-oleoyl-2-acetyl-sn-glycerol [OAG; a PKC activator (0.01 or 50 microM)] before treatment with oxidant (0.5 mM H(2)O(2)). Only in monolayers overexpressing PKC-beta1 (3.1-fold) did low doses of EGF or OAG initiate protection, increase tubulin polymerization (assessed by quantitative immunoblotting) and microtubule architectural integrity (laser scanning confocal microscopy), maintain normal barrier permeability (fluorescein sulfonic acid clearance), and cause redistribution of PKC-beta1 from cytosolic pools into membrane and/or cytoskeletal fractions (assessed by immunoblotting), thus indicating PKC-beta1 activation. Antisense inhibition of PKC-beta1 expression (-90%) prevented these changes and abolished EGF protection. We conclude that EGF protection against oxidants requires PKC-beta1 isoform activation. This mechanism may be useful for development of novel therapies for the treatment of inflammatory gastrointestinal disorders including inflammatory bowel disease.  相似文献   

20.
The interaction between intestinal epithelial cells and microbes is partly mediated by Toll-like receptors (TLRs). Sensing of Gram-positive and Gram-negative bacteria by TLR2 and TLR4, respectively, can result in immune system activation and in an exclusion of bacteria from the intestine. To test the impact of these TLRs on bacterial composition, germ-free TLR2/TLR4 double-knock out mice and the corresponding C57BL/10ScSn wild-type mice where associated with fecal bacteria from one single donor mouse. In addition, C3H/HeOuJ and BALB/c mice were used in this study. Fecal bacteria were monitored over 13 weeks with denaturing-gradient gel electrophoresis (DGGE). Colonic bacteria were enumerated by fluorescent in situ hybridization (FISH) and short-chain fatty acids (SCFA) were measured in caecal samples. No effect of the TLRs on intestinal microbiota composition and SCFA concentrations was observed. However, the microbiota composition as reflected by DGGE band patterns differed between C3H and BALB/c mice on the one hand and C57BL/10 mice on the other hand. Corresponding differences between the mouse strains were also observed in cecal propionic, valeric and i-valeric acid concentrations. No differences between the animals were observed in the numbers of bacteria detected by FISH. We conclude that genetic traits but not TLR2 and TLR4 have an impact on the intestinal microbiota composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号