共查询到20条相似文献,搜索用时 15 毫秒
1.
The intestinal epithelium is the largest surface area of the body in contact with the external environment. This specialized single cell layer is constantly renewed and is a physical barrier that separates intestinal microbiota from underlying tissues, preventing bacterial infiltration and subsequent inflammation. Specialized secretory epithelial cell types such as Paneth cells and goblet cells limit bacterial adhesion and infiltration by secreting antibacterial peptides and mucins, respectively. Rapid cell renewal coincides with apical exfoliation of 'old' enterocytes without compromising epithelial barrier integrity. When the intestinal epithelium is inflamed barrier integrity can be compromised, due to uncontrolled death of enterocytes allowing bacterial infiltration. This review discusses the different mechanisms which regulate or affect intestinal barrier integrity under homeostatic and inflammatory conditions. 相似文献
2.
Relationship between intestinal microecology and the translocation of intestinal bacteria 总被引:2,自引:0,他引:2
C. L. Wells 《Antonie van Leeuwenhoek》1990,58(2):87-93
It is now well known that endogenous bacteria can translocate from the intestinal tract and cause many of the complicating infections seen in severely ill, hospitalized patients. Of the hundreds of bacterial species in the intestinal tract, relatively few aerobic/facultative species appear to translocate with any frequency. Van der Waaij and colleagues (1971, 1972a, 1972b) originally proposed that, by a process termed colonization resistance, strictly anaerobic bacteria prevented the intestinal overgrowth and subsequent translocation of these potentially pathogenic aerobic/facultative bacteria. Selective antimicrobial decontamination, designed to maintain colonization resistance, has been effective in reducing the incidence of infectious morbidity in high risk patients. However, the mechanisms controlling bacterial translocation remain unclear, but appear to depend on host factors, as well as on factors inherent in the microbe itself. There is both clinical and experimental evidence supporting the concept that strictly anaerobic bacteria do not readily translocate. Bacteria that are able to survive within macrophages (e.g., Salmonella species and Listeria monocytogenes) translocate easier than others, and there is recent experimental evidence that normal intestinal bacteria may translocate to the draining mesenteric lymph node within host phagocytes. There is also evidence that anaerobic bacteria translocate along with facultative species in situations associated with intestinal epithelial damage, i.e., burn trauma, oral ricinoleic acid, and acute mesenteric ischemia. In contrast, recent experimental evidence demonstrates that facultative bacteria can translocate across a histologically intact intestinal epithelium, and that the ileal absorptive cell may be at least one portal of entry prior to transport into deeper tissues. It is anticipated that further clarification of the routes and mechanisms involved in bacterial translocation will provide new insights into the treatment and prevention of a significant proportion of the infectious morbidity seen in severely ill, hospitalized patients.
Antoni van Leeuwenhoek Lecture presented at the Annual Meeting of the Netherlands Society of Microbiology, Utrecht, 23 November, 1989. 相似文献
3.
Lucia Pulzova Mangesh R. Bhide & Kovac Andrej 《FEMS immunology and medical microbiology》2009,57(3):203-213
Neurological manifestations caused by neuroinvading pathogens are typically attributed to penetration of the blood–brain barrier (BBB) and invasion of the central nervous system. However, the mechanisms used by many pathogens (such as Borrelia ) to traverse the BBB are still unclear. Recent studies revealed that microbial translocation across the BBB must involve a repertoire of microbial–host interactions (receptor–ligand interactions). However, the array of interacting molecules responsible for the borrelial translocation is not yet clearly known. Pathogens bind several host molecules (plasminogen, glycosaminoglycans, factor H, etc.) that might mediate endothelial interactions in vivo . This review summarizes our current understanding of the pathogenic mechanisms involved in the translocation of the BBB by neuroinvasive pathogens. 相似文献
4.
We investigated the ability of vasoactive intestinal peptide (VIP) to cross the blood-brain barrier (BBB), the interface between the peripheral circulation and central nervous system (CNS). VIP labeled with 131I (I-VIP) and injected intravenously into mice was taken up by brain as determined by multiple-time regression analysis. Excess unlabeled VIP was unable to impede the entry of I-VIP, indicating that passage is by nonsaturable transmembrane diffusion. High pressure liquid chromatography (HPLC) showed the radioactivity entering the brain to be intact I-VIP. After intracerebroventricular (i.c.v.) injection, I-VIP was sequestered by brain, slowing its efflux from the CNS. In summary, VIP crosses the BBB unidirectionally from blood to brain by transmembrane diffusion. 相似文献
5.
RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain 总被引:21,自引:0,他引:21
Deane R Du Yan S Submamaryan RK LaRue B Jovanovic S Hogg E Welch D Manness L Lin C Yu J Zhu H Ghiso J Frangione B Stern A Schmidt AM Armstrong DL Arnold B Liliensiek B Nawroth P Hofman F Kindy M Stern D Zlokovic B 《Nature medicine》2003,9(7):907-913
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis. 相似文献
6.
Banan A Fields JZ Zhang Y Keshavarzian A 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(6):G1234-G1246
Using oxidant-induced hyperpermeability of monolayers of intestinal (Caco-2) cells as a model for the pathophysiology of inflammatory bowel disease (IBD), we previously showed that oxidative injury to the F-actin cytoskeleton is necessary for the disruption of monolayer barrier integrity. We hypothesized that this cytoskeletal damage is caused by upregulation of an inducible nitric oxide (NO) synthase (iNOS)-driven pathway that overproduces reactive nitrogen metabolites (RNMs) such as NO and peroxynitrite (OONO(-)), which cause actin nitration and disassembly. Monolayers were exposed to H(2)O(2) or to RNMs with and without pretreatment with antioxidants or iNOS inhibitors. H(2)O(2) concentrations that disassembled and/or disrupted the F-actin cytoskeleton and barrier integrity also caused rapid iNOS activation, NO overproduction, and actin nitration. Added OONO(-) mimicked H(2)O(2); iNOS inhibitors and RNM scavengers were protective. Our results show that oxidant-induced F-actin and intestinal barrier disruption are caused by rapid iNOS upregulation that further increases oxidant levels; a similar positive feedback mechanism may underlie the episodic recurrence of the acute IBD attack. Confirming these mechanisms in vivo would provide a rationale for developing novel anti-RNM therapies for IBD. 相似文献
7.
Eva Latorre Carmen Mendoza Elena Layunta Ana I. Alcalde José E. Mesonero 《Cell stress & chaperones》2014,19(2):289-293
Intestinal inflammatory diseases are the result of multiple processes, including mucosal oxidative stress and perturbed homeostasis between commensal bacteria and mucosal immunity. Toll-like receptors (TLRs) recognize molecular-associated microorganisms' patterns and trigger innate immunity responses contributing to intestinal homeostasis and inflammatory responses. However, TLRs effects on redox balance in intestinal mucosa remain unknown. Therefore, the present study analyzes the effect of TLR2, TLR3, and TLR4 on both oxidative damage of lipids and proteins, and the activity of antioxidant enzymes in enterocyte-like Caco-2 cells. The results show that the activation of these TLRs increased lipid and protein oxidation levels; however, the effect on the antioxidant enzymes activity is different depending on the TLR activated. These results suggest that the activation of TLR2, TLR3, and TLR4 might affect intestinal inflammation by not only their inherent innate immunity responses, but also their pro-oxidative effects on intestinal epithelial cells. 相似文献
8.
Al-Sadi R Khatib K Guo S Ye D Youssef M Ma T 《American journal of physiology. Gastrointestinal and liver physiology》2011,300(6):G1054-G1064
Defective intestinal epithelial tight junction (TJ) barrier has been shown to be an important pathogenic factor contributing to the development of intestinal inflammation. The expression of occludin is markedly decreased in intestinal permeability disorders, including in Crohn's disease, ulcerative colitis, and celiac disease, suggesting that the decrease in occludin expression may play a role in the increase in intestinal permeability. The purpose of this study was to delineate the involvement of occludin in intestinal epithelial TJ barrier by selective knock down of occludin in in vitro (filter-grown Caco-2 monolayers) and in vivo (recycling perfusion of mouse intestine) intestinal epithelial models. Our results indicated that occludin small-interfering RNA (siRNA) transfection causes an increase in transepithelial flux of various-sized probes, including urea, mannitol, inulin, and dextran, across the Caco-2 monolayers, without affecting the transepithelial resistance. The increase in relative flux rate was progressively greater for larger-sized probes, indicating that occludin depletion has the greatest effect on the flux of large macromolecules. siRNA-induced knock down of occludin in mouse intestine in vivo also caused an increase in intestinal permeability to dextran but did not affect intestinal tissue transepithelial resistance. In conclusion, these results show for the first time that occludin depletion in intestinal epithelial cells in vitro and in vivo leads to a selective or preferential increase in macromolecule flux, suggesting that occludin plays a crucial role in the maintenance of TJ barrier through the large-channel TJ pathway, the pathway responsible for the macromolecule flux. 相似文献
9.
Background
Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction.Methodology/Principal Findings
Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression.Conclusions/Significance
The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. 相似文献10.
Traversal of pathogen across the blood-brain barrier (BBB) is an essential step for central nervous system (CNS) invasion. Pathogen traversal can occur paracellularly, transcellularly, and/or in infected phagocytes (Trojan horse mechanism). To trigger the translocation processes, mainly through paracellular and transcellular ways, interactions between protein molecules of pathogen and BBB are inevitable. Simply, it takes two to tango: both host receptors and pathogen ligands. Underlying molecular basis of BBB translocation of various pathogens has been revealed in the last decade, and a plethora of experimental data on protein-protein interactions has been created. This review compiles these data and should give insights into the ligand-receptor interactions that occur during BBB translocation. Further, it sheds light on cell signaling events triggered in response to ligand-receptor interaction. Understanding of the molecular principles of pathogen-host interactions that are involved in traversal of the BBB should contribute to develop new vaccine and drug strategies to prevent CNS infections. 相似文献
11.
Takahashi T Sakaguchi E 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2006,176(2):173-178
Flow cytometry was used to observe the transport of fluorescently labelled viable bacteria in the large intestinal lumen of
guinea pigs after the injection of the bacteria into the proximal colon. Bacteria were transported along the radial and longitudinal
axes of the intestine and were separated from dietary residue, accumulated, and then transported back to the caecum. These
observations, together with the heterogeneous distribution of bacterial species and chemical composition across and along
the large intestine, suggest that there are several different microenvironments within the intestinal lumen between which
bacteria and/or dietary residues move. The existence of different microenvironments within the intestinal lumen is consistent
with poor mixing of the digesta within the large intestine of pigs and chickens. 相似文献
12.
Sumitomo T Nakata M Higashino M Jin Y Terao Y Fujinaga Y Kawabata S 《The Journal of biological chemistry》2011,286(4):2750-2761
Group A Streptococcus pyogenes (GAS) is a human pathogen that causes local suppurative infections and severe invasive diseases. Systemic dissemination of GAS is initiated by bacterial penetration of the epithelial barrier of the pharynx or damaged skin. To gain insight into the mechanism by which GAS penetrates the epithelial barrier, we sought to identify both bacterial and host factors involved in the process. Screening of a transposon mutant library of a clinical GAS isolate recovered from an invasive episode allowed identification of streptolysin S (SLS) as a novel factor that facilitates the translocation of GAS. Of note, the wild type strain efficiently translocated across the epithelial monolayer, accompanied by a decrease in transepithelial electrical resistance and cleavage of transmembrane junctional proteins, including occludin and E-cadherin. Loss of integrity of intercellular junctions was inhibited after infection with a deletion mutant of the sagA gene encoding SLS, as compared with those infected with the wild type strain. Interestingly, following GAS infection, calpain was recruited to the plasma membrane along with E-cadherin. Moreover, bacterial translocation and destabilization of the junctions were partially inhibited by a pharmacological calpain inhibitor or genetic interference with calpain. Our data indicate a potential function of SLS that facilitates GAS invasion into deeper tissues via degradation of epithelial intercellular junctions in concert with the host cysteine protease calpain. 相似文献
13.
Satoshi Omori Misato Tsugita Yasuto Hoshikawa Masanobu Morita Fumiya Ito Shin-Ichiro Yamaguchi Qilin Xie Osamu Noyori Tomoya Yamaguchi Ayato Takada Tatsuya Saitoh Shinya Toyokuni Hisaya Akiba Shigekazu Nagata Kengo Kinoshita Masafumi Nakayama 《Cell reports》2021,34(6):108734
- Download : Download high-res image (187KB)
- Download : Download full-size image
14.
Banan A Fields JZ Talmage DA Zhang Y Keshavarzian A 《American journal of physiology. Gastrointestinal and liver physiology》2001,281(3):G833-G847
Using monolayers of human intestinal (Caco-2) cells, we found that oxidants and ethanol damage the cytoskeleton and disrupt barrier integrity; epidermal growth factor (EGF) prevents damage by enhancement of protein kinase C (PKC) activity and translocation of the PKC-beta1 isoform. To see if PKC-beta1 mediates EGF protection, cells were transfected to stably over- or underexpress PKC-beta1. Transfected monolayers were preincubated with low or high doses of EGF (1 or 10 ng/ml) or 1-oleoyl-2-acetyl-sn-glycerol [OAG; a PKC activator (0.01 or 50 microM)] before treatment with oxidant (0.5 mM H(2)O(2)). Only in monolayers overexpressing PKC-beta1 (3.1-fold) did low doses of EGF or OAG initiate protection, increase tubulin polymerization (assessed by quantitative immunoblotting) and microtubule architectural integrity (laser scanning confocal microscopy), maintain normal barrier permeability (fluorescein sulfonic acid clearance), and cause redistribution of PKC-beta1 from cytosolic pools into membrane and/or cytoskeletal fractions (assessed by immunoblotting), thus indicating PKC-beta1 activation. Antisense inhibition of PKC-beta1 expression (-90%) prevented these changes and abolished EGF protection. We conclude that EGF protection against oxidants requires PKC-beta1 isoform activation. This mechanism may be useful for development of novel therapies for the treatment of inflammatory gastrointestinal disorders including inflammatory bowel disease. 相似文献
15.
The interaction between intestinal epithelial cells and microbes is partly mediated by Toll-like receptors (TLRs). Sensing of Gram-positive and Gram-negative bacteria by TLR2 and TLR4, respectively, can result in immune system activation and in an exclusion of bacteria from the intestine. To test the impact of these TLRs on bacterial composition, germ-free TLR2/TLR4 double-knock out mice and the corresponding C57BL/10ScSn wild-type mice where associated with fecal bacteria from one single donor mouse. In addition, C3H/HeOuJ and BALB/c mice were used in this study. Fecal bacteria were monitored over 13 weeks with denaturing-gradient gel electrophoresis (DGGE). Colonic bacteria were enumerated by fluorescent in situ hybridization (FISH) and short-chain fatty acids (SCFA) were measured in caecal samples. No effect of the TLRs on intestinal microbiota composition and SCFA concentrations was observed. However, the microbiota composition as reflected by DGGE band patterns differed between C3H and BALB/c mice on the one hand and C57BL/10 mice on the other hand. Corresponding differences between the mouse strains were also observed in cecal propionic, valeric and i-valeric acid concentrations. No differences between the animals were observed in the numbers of bacteria detected by FISH. We conclude that genetic traits but not TLR2 and TLR4 have an impact on the intestinal microbiota composition. 相似文献
16.
17.
C Barber 《Microbios》1985,43(173):107-114
Proteins of both small and large molecular sizes diffuse together across the outer membrane barrier of bacterial cells. Once outside, the proteins present in convenient extracts react in agar-gel diffusions against correspondingly antibacterial induced antibodies by precipitation lines that occur at various distances from the wells containing the antigens. The distances between the precipitation lines depend on the velocity with which the proteins are moving in the agar gel; their speed is a result of the molecular sizes of the proteins. The differences involve the intrinsic qualities of the species that synthesize the antigens. 相似文献
18.
Kim KS 《International journal for parasitology》2006,36(5):607-614
A major contributing factor to high mortality and morbidity associated with CNS infection is the incomplete understanding of the pathogenesis of this disease. Relatively small numbers of pathogens account for most cases of CNS infections in humans, but it is unclear how such pathogens cross the blood-brain barrier (BBB) and cause infections. The development of the in vitro BBB model using human brain microvascular endothelial cells has facilitated our understanding of the microbial translocation of the BBB, a key step for the acquisition of CNS infections. Recent studies have revealed that microbial translocation of the BBB involves host cell actin cytoskeletal rearrangements, most likely as the result of specific microbial-host interactions. A better understanding of microbial-host interactions that are involved in microbial translocation of the BBB should help in developing new strategies to prevent CNS infections. This review summarises our current understanding of the pathogenic mechanisms involved in translocation of the BBB by meningitis-causing bacteria, fungi and parasites. 相似文献
19.
Hoffmann O Braun JS Becker D Halle A Freyer D Dagand E Lehnardt S Weber JR 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(10):6476-6481
Innate immunity relies on pattern recognition receptors to detect the presence of infectious pathogens. In the case of Gram-positive bacteria, binding of bacterial lipopeptides to TLR2 is currently regarded as an important mechanism. In the present study, we used the synthetic bacterial lipopeptide Pam3CysSK4, a selective TLR2 agonist, to induce meningeal inflammation in rodents. In a 6-h rat model, intrathecal application of Pam3CysSK4 caused influx of leukocytes into the cerebrospinal fluid (CSF) and induced a marked increase of regional cerebral blood flow and intracranial pressure. In wild-type mice, we observed CSF pleocytosis and an increased number of apoptotic neurons in the dentate gyrus 24 h after intrathecal challenge. Inflammation and associated neuronal loss were absent in TLR2 knockout mice. In purified neurons, cytotoxicity of Pam3CysSK4 itself was not observed. Exposure of microglia to Pam3CysSK4 induced neurotoxic properties in the supernatant of wild-type, but not TLR2-deficient microglia. We conclude that TLR2-mediated signaling is sufficient to induce the host-dependent key features of acute bacterial meningitis. Therefore, synthetic lipopeptides are a highly specific tool to study mechanisms of TLR2-driven neurodegeneration in vivo. 相似文献
20.
Yun-Hong Hu Yu Zhang Li-Qun Jiang Shuai Wang Cao-Qi Lei Ming-Shun Sun Hong-Bing Shu Yu Liu 《EMBO reports》2015,16(4):447-455
Toll-like receptors (TLRs) are pattern recognition receptors that sense a variety of pathogens, initiate innate immune responses, and direct adaptive immunity. All TLRs except TLR3 recruit the adaptor MyD88 to ultimately elicit inflammatory gene expression, whereas TLR3 and internalized TLR4 use TIR-domain-containing adaptor TRIF for the induction of type I interferon and inflammatory cytokines. Here, we identify the WD repeat and FYVE-domain-containing protein WDFY1 as a crucial adaptor protein in the TLR3/4 signaling pathway. Overexpression of WDFY1 potentiates TLR3- and TLR4-mediated activation of NF-κB, interferon regulatory factor 3 (IRF3), and production of type I interferons and inflammatory cytokines. WDFY1 depletion has the opposite effect. WDFY1 interacts with TLR3 and TLR4 and mediates the recruitment of TRIF to these receptors. Our findings suggest a crucial role for WDFY1 in bridging the TLR–TRIF interaction, which is necessary for TLR signaling. 相似文献