首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Arginine-rich cell-penetrating peptides have found excellent utility in cell and in vivo models for enhancement of delivery of attached charge-neutral PNA or PMO oligonucleotides. We report the synthesis of dendrimeric peptides containing 2- or 4-branched arms each having one or more R-Ahx-R motifs and their disulfide conjugation to a PNA705 splice-redirecting oligonucleotide. Conjugates were assayed in a HeLa pLuc705 cell assay for luciferase up-regulation and splicing redirection. Whereas 8-Arg branched peptide-PNA conjugates showed poor activity compared to a linear (R-Ahx-R)(4)-PNA conjugate, 2-branched and some 4-branched 12 and 16 Arg peptide-PNA conjugates showed activity similar to that of the corresponding linear peptide-PNA conjugates. Many of the 12- and 16-Arg conjugates retained significant activity in the presence of serum. Evidence showed that biological activity in HeLa pLuc705 cells of the PNA conjugates of branched and linear (R-Ahx-R) peptides is associated with an energy-dependent uptake pathway, predominantly clathrin-dependent, but also with some caveolae dependence.  相似文献   

2.
Peptide nucleic acids (PNAs) are very attractive antisense and antigene agents, but these molecules are not passively taken into cells. Here, using a functional cell assay and fluorescent-based methods, we investigated cell uptake and antisense activity of a tridecamer PNA that targets the HIV-1 polypurine tract sequence delivered using the arginine-rich (R/W)9 peptide (RRWWRRWRR). At micromolar concentrations, without use of any transfection agents, almost 80% inhibition of the target gene expression was obtained with the conjugate in the presence of the endosomolytic agent chloroquine. We show that chloroquine not only induced escape from endosomes but also enhanced the cellular uptake of the conjugate. Mechanistic studies revealed that (R/W)9-PNA conjugates were internalized via pinocytosis. Replacement of arginines with lysines reduced the uptake of the conjugate by six-fold, resulting in the abolition of intracellular target inhibition. Our results show that the arginines play a crucial role in the conjugate uptake and antisense activity. To determine whether specificity of the interactions of arginines with cell surface proteoglycans result in the internalization, we used flow cytometry to examine uptake of arginine- and lysine-rich conjugates in wild-type CHO-K1 and proteoglycan-deficient A745 cells. The uptake of both conjugates was decreased by four fold in CHO-745 cells; therefore proteoglycans promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Our results show that arginine-rich cell-penetrating peptides, especially (R/W)9, are a promising tool for PNA internalization.  相似文献   

3.
BACKGROUND: Directing splicing using oligonucleotides constitutes a promising therapeutic tool for a variety of diseases such as beta-thalassemia, cystic fibrosis, and certain cancers. The rationale is to block aberrant splice sites, thus directing the splicing of the pre-mRNA towards the desired protein product. One of the difficulties in this setup is the poor bioavailability of oligonucleotides, as the most frequently used transfection agents are unsuitable for in vivo use. Here we present splice-correcting peptide nucleic acids (PNAs), tethered to a variety of cell-penetrating peptides (CPPs), evaluating their mechanism of uptake and ability to correct aberrant splicing. METHODS: HeLa cells stably expressing luciferase containing an aberrant splice site were used. A previously described PNA sequence, capable of correcting the aberrant splicing, was conjugated to the CPPs, Tat, penetratin and transportan, via a disulfide bridge. The ability of the CPP-PNA conjugates to correct splicing was measured, and membrane disturbance and cell viability were evaluated using LDH leakage and WST-1 assays. Lysosomotropic agents, inhibition of endocytosis at 4 degrees C and confocal microscopy were used to investigate the importance of endocytosis in the uptake of the cell-penetrating PNAs. RESULTS: All the three CPPs were able to promote PNA translocation across the plasma membrane and induce splice correction. Transportan (TP) was the most potent vector and significantly restored splicing in a concentration-dependent manner. Interestingly, TP also rendered a concentration-dependent splice correction in serum, in contrast to Tat and penetratin. Addition of the lysosomotrophic agent chloroquine increases the splice correction efficacy of the CPP-PNA conjugates up to 4-fold, which together with experiments at 4 degrees C and the visual information from confocal microscopy, indicate that the mechanism of uptake responsible for internalization of CPP-PNA conjugates is mainly endocytic. Finally, co-localization studies with dextran further indicate that conjugates, at least in the case of TP, internalize via endocytosis and in particular macropinocytosis. CONCLUSIONS: These data demonstrate that CPPs can be used for the delivery of splice-correcting PNAs, with potential to be used as a therapeutic approach for regulating splicing in a variety of diseases. Transportan presents itself as the overall most suitable vector in this study, generating the most efficient conjugates for splice correction.  相似文献   

4.
With the aim of developing a general and straightforward procedure for the intracellular delivery of naked peptide nucleic acids (PNAs), we designed an intracellularly biodegradable triphenylphosphonium (TPP) cation based transporter system. In this system, TPP is linked, via a biolabile disulfide bridge, to an activated mercaptoethoxycarbonyl moiety, allowing its direct coupling to the N-terminal extremity of a free PNA through a carbamate bond. We found that such TPP-PNA-carbamate conjugates were highly stable in a cell culture medium containing fetal calf serum. In a glutathione-containing medium mimicking the cytosol, the conjugates were rapidly degraded into an unstable intermediate, which spontaneously decomposed, releasing the free PNA. Using a fluorescence-labeled PNA-TPP conjugate, we demonstrated that conjugates were taken up by cells. Efficient cellular uptake and release of the PNA into the cytosol was further confirmed by the anti-HIV activity measured for the TPP-conjugate of a 16-mer PNA targeting the TAR region of the HIV-1 genome. This conjugate exhibited an IC(50) value of 1 microM, while the free 16-mer PNA did not inhibit replication of HIV in the same cellular test.  相似文献   

5.
6.
Wolf Y  Pritz S  Abes S  Bienert M  Lebleu B  Oehlke J 《Biochemistry》2006,45(50):14944-14954
Peptide nucleic acids (PNAs) have shown great promise as potential antisense drugs; however, poor cellular delivery limits their applications. Improved delivery into mammalian cells and enhanced biological activity of PNAs have been achieved by coupling to cell-penetrating peptides (CPPs). Structural requirements for the shuttling ability of these peptides as well as structural properties of the conjugates such as the linker type and peptide position remained controversial, so far. In the present study an 18mer PNA targeted to the cryptic splice site of a mutated beta-globin intron 2, which had been inserted into a luciferase reporter gene coding sequence, was coupled to various peptides. As the peptide lead we used the cell-penetrating alpha-helical amphipathic peptide KLAL KLAL KAL KAAL KLA-NH2 [model amphipathic peptide (MAP)] which was varied with respect to charge and structure-forming properties. Furthermore, the linkage and the localization of the attached peptide (C- vs N-terminal) were modified. Positive charge as well as helicity and amphipathicity of the KLA peptide was all required for efficient dose-dependent correction of aberrant splicing. The highest antisense effect was reached within 4 h without any transfection agent. Stably linked conjugates were also efficient in correction of aberrant splicing, suggesting that a cleavable disulfide bond between CPP and PNA is clearly not essential. Moreover, the placement of the attached peptide turned out to be crucial for attaining antisense activity. Coadministration of endosome disrupting agents such as chloroquine or Ca2+ significantly increased the splicing correction efficiency of some conjugates, indicating the predominant portion to be sequestered in vesicular compartments.  相似文献   

7.
Peptide nucleic acid (PNA) oligomers were conjugated to cell-penetrating peptides: pAnt, a 17-residue fragment of the Drosophila protein Antennapedia, and pTat, a 14-amino acid fragment of HIV protein Tat. A 14-mer PNA was attached to the peptide by disulfide linkage or by maleimide coupling. The uptake of (directly or indirectly, via biotin) fluorescein-labeled peptides, PNAs, or PNA-peptide conjugates was studied by fluorescence microscopy, confocal laser scanning microscopy, and fluorometry in five cell types. In SK-BR-3, HeLa, and IMR-90 cells, the PNA-peptide conjugates and a T1, backbone-modified PNA were readily taken up (2 microM). The PNA was almost exclusively confined to vesicular compartments in the cytosol. However, the IMR-90 cells also showed a weak diffuse staining of the cytoplasm. In the U937 cells, we observed a very weak and exclusively vesicular staining with the PNA-peptide conjugates and the T(lys)-modified PNA. No evident uptake of the unmodified PNA was seen. In H9 cells, both peptides and the PNA-peptide conjugates quickly associated with the membrane, followed by a weak intracellular staining. A cytotoxic effect resulting in artificial staining of the cells was observed with fluoresceinated peptides and PNA-peptide conjugates at concentrations above 5-10 microM, depending on cell type and incubation time. We conclude that uptake of PNAs in many cell types can be achieved either by conjugating to certain peptides or simply by charging the PNA backbone using lysine PNA units. The uptake is time, temperature, and concentration dependent and mainly endocytotic. Our results also show that proper controls for cytotoxicity should always be carried out to avoid misinterpretation of visual data.  相似文献   

8.
Improvement of cellular uptake and cellular localization is still one of the main obstacles to the development of antisense-antigene therapeutics, including peptide nucleic acid (PNA). Cell-penetrating peptides (CPPs) such as Tat peptide and polyarginine have been widely used to improve the cellular uptake of PNA and other antisense agents. Cellular uptake of most CPP conjugates occurs mainly through endocytotic pathways, and most CPP conjugate is retained in the endosomal compartments of the cell. Several methods to induce endosome disruption have been shown to improve the bioavailability of CPP conjugates to the cytosol and/or nucleus by facilitating escape from the endosomal compartments. Here we describe protocols for the delivery of CPP-PNA conjugates to adherent cultured cells using photodynamic treatment (photochemical internalization), Ca2+ treatment or chloroquine treatment to potentiate the antisense effects of CPP-PNA conjugates through increased release of CPP conjugates into the cytoplasm. This protocol, consisting of CPP-mediated delivery assisted by an endosome-disruption agent, allows the delivery of the CPP-PNA conjugates to the nucleus and/or cytosol of cultured cells. The endosome-disruption treatment improves the nuclear antisense effects of CPP-PNA conjugates by up to two orders of magnitude using 24-hour delivery.  相似文献   

9.
Sequence-specific interference with the nuclear pre-mRNA splicing machinery has received increased attention as an analytical tool and for development of therapeutics. It requires sequence-specific and high affinity binding of RNaseH-incompetent DNA mimics to pre-mRNA. Peptide nucleic acids (PNA) or phosphoramidate morpholino oligonucleotides (PMO) are particularly suited as steric block oligonucleotides in this respect. However, splicing correction by PNA or PMO conjugated to cell penetrating peptides (CPP), such as Tat or Penetratin, has required high concentrations (5–10μM) of such conjugates, unless an endosomolytic agent was added to increase escape from endocytic vesicles. We have focused on the modification of existing CPPs to search for peptides able to deliver more efficiently splice correcting PNA or PMO to the nucleus in the absence of endosomolytic agents. We describe here R6-Penetratin (in which arginine-residues were added to the N-terminus of Penetratin) as the most active of all CPPs tested so far in a splicing correction assay in which masking of a cryptic splice site allows expression of a luciferase reporter gene. Efficient and sequence-specific correction occurs at 1μM concentration of the R6Pen–PNA705 conjugate as monitored by luciferase luminescence and by RT-PCR. Some aspects of the R6Pen–PNA705 structure–function relationship have also been evaluated.  相似文献   

10.
We have demonstrated that polyamide nucleic acids complementary to the transactivation response (TAR) element of HIV-1 LTR inhibit HIV-1 production when transfected in HIV-1 infected cells. We have further shown that anti-TAR PNA (PNA(TAR)) conjugated with cell-penetrating peptide (CPP) is rapidly taken up by cells and exhibits strong antiviral and anti-HIV-1 virucidal activities. Here, we pharmacokinetically analyzed (125)I-labeled PNA(TAR) conjugated with two CPPs: a 16-mer penetratin derived from antennapedia and a 13-mer Tat peptide derived from HIV-1 Tat. We administered the (125)I-labeled PNA(TAR)-CPP conjugates to male Balb/C mice through intraperitoneal or gavage routes. The naked (125)I-labeled PNA(TAR) was used as a control. Following a single administration of the labeled compounds, their distribution and retention in various organs were monitored at various time points. Regardless of the administration route, a significant accumulation of each PNA(TAR)-CPP conjugate was found in different mouse organs and tissues. The clearance profile of the accumulated radioactivity from different organs displayed a biphasic exponential pathway whereby part of the radioactivity cleared rapidly, but a significant portion of it was slowly released over a prolonged period. The kinetics of clearance of individual PNA(TAR)-CPP conjugates slightly varied in different organs, while the overall biphasic clearance pattern remained unaltered regardless of the administration route. Surprisingly, unconjugated naked PNA(TAR) displayed a similar distribution and clearance profile in most organs studied although extent of its uptake was lower than the PNA(TAR)-CPP conjugates.  相似文献   

11.
A 12‐mer peptide nucleic acid (PNA) directed against the nociceptin/orphanin FQ receptor mRNA was disulfide bridged with various peptides without and with cell‐penetrating features. The cellular uptake and the antisense activity of these conjugates were assessed in parallel. Quantitation of the internalized PNA was performed by using an approach based on capillary electrophoresis with laser‐induced fluorescence detection (CE‐LIF). This approach enabled a selective assessment of the PNA moiety liberated from the conjugate in the reducing intracellular environment, thus avoiding bias of the results by surface adsorption. The biological activity of the conjugates was studied by an assay based on the downregulation of the nociceptin/orphanin FQ receptor in neonatal rat cardiomyocytes (CM). Comparable cellular uptake was found for all conjugates and for the naked PNA, irrespective of the cell‐penetrating properties of the peptide components. All conjugates exhibited a comparable biological activity in the 100 nM range. The naked PNA also exhibited extensive antisense activity, which, however, proved about five times lower than that of the conjugates. The found results suggest cellular uptake and the bioactivity of PNA‐peptide conjugates to be not primarily related to the cell‐penetrating ability of their peptide components. Likewise from these results it can be inferred that the superior bioactivity of the PNA‐peptide conjugates in comparison with that of naked PNA rely on as yet unknown factors rather than on higher membrane permeability. Several hints point to the resistance against cellular export and the aggregation propensity combined with the endocytosis rate to be candidates for such factors. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Two Zn-Pc-peptide conjugates bearing either a short linker or a long PEG-linker between the macrocycle and a bifunctional peptide containing the nucleoplasmin and HIV-1 Tat 48-60 sequences have been synthesized in order to increase the Pc cell-targeting ability and to evaluate the effect of the linker. The presence of the peptide chain increased the water solubility of the Pc macrocycle and, consequently, its fluorescence in aqueous solutions. The highest fluorescence quantum yields were observed at low pH (5.0) for both conjugates and were always higher for the conjugate bearing the short linker. Both conjugates were found to have low dark cytotoxicity toward human HEp2 cells (IC50 > 77 microM) but were highly phototoxic (IC50 < 2 microM at 1 J cm-2). The conjugate bearing the long PEG-linker accumulated the most within cells (26 times more than the unconjugated Zn-Pc), followed by the short linker conjugate (17 times more than the unconjugated Zn-Pc). Both conjugates were found to localized preferentially within the cell lysosomes.  相似文献   

13.
Cell penetrating peptides (CPPs) have been shown to enhance the cellular uptake of antisense oligonucleotides (AOs). However, the effectiveness of the CPPs for cytoplasmic or nuclear delivery of therapeutic AOs must take into account the possible entrapment of the CPP-AO conjugates in endosomes/lysosomes and the overall stability of the CPP-AO conjugates to enzymes. This includes the stabilities of the CPPs and AOs themselves as well as the linkage between them. In this study, we investigated the effects of several structural features of arginine-rich CPPs on the metabolic stability of CPP conjugated to phosphorodiamidate morpholino oligomers (PMOs) in human serum and in cells. Those structural features include amino acid configurations (d or l), incorporation of non-alpha-amino acids, peptide sequences, and types of linkages between CPPs and PMOs. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we found that the stability of the CPP portion was varied although the PMO portion of the conjugate was completely stable both in cells and in human serum. d-Configuration CPPs were completely stable, while l-CPPs were degraded in both serum and HeLa cells. Insertions of 6-aminohexanoic acid residues (X) into an R8 peptide increased the corresponding CPP's serum stability with the degree of stability being dependent upon the positions of X. However, X-containing CPPs were degraded rapidly intracellularly. Insertions of beta-alanines (B) into the R8 peptide increased its serum stability and intracellular stability. An amide or a maleimide linkage was stable in both serum and cells; however, an unhindered disulfide linkage was not stable in either. By using fluorescent microscopy, flow cytometry, and an antisense splice correction assay, the cellular uptakes of an X-containing conjugate and its fragments were compared to their antisense activities. We found that a large fraction of the conjugate was trapped within vesicles and the degraded fragments cannot escape from the vesicles. This study indicates that the incorporation of non-alpha-amino acids into l-CPPs can increase the metabolic stability of CPP-PMOs without using costly d-CPPs. However, the position and type of non-alpha-amino acids affect the degree of stability extracellularly and intracellularly. In addition, this study reveals that the degradation of an X-containing CPP-PMO conjugate is a more rapid process than degradation of a B-containing conjugate. Last, the endosomal/lysosomal trapping limits the effectiveness of a CPP-PMO conjugate, and the stability of the CPP is one of the factors affecting the ability of the conjugate to escape the endosomes/lysosomes.  相似文献   

14.
Attaching peptides to metallodrugs may result in improved biological properties of the complexes. The potential use of cell penetrating peptides (CPPs) as cell delivery vectors is attractive, since directed cell uptake of (metallo)drugs remains a major challenge in anticancer drug design. In this work, we report the synthesis of peptide conjugates of the organometallic Os(II) anticancer complex [(η(6)-biphenyl)Os(picolinate)Cl] with different arginine (Arg) chain lengths. Complexes conjugated to Arg(5) or Arg(8) at the 5-position of the picoline ring increase Os uptake into A2780 human ovarian cancer cells by ca. 2× and 10×, respectively, whereas a single Arg had no effect. Furthermore, a 15-fold increase in binding of Os to DNA, a potential target for these complexes, was observed for Arg(8) compared to the Arg(1) conjugate. The Arg(5) and Arg(8) conjugates exhibited fast kinetics of binding to calf thymus DNA and an ability to precipitate DNA at very low concentrations. In serum-free medium, the Arg(8) complex was cytotoxic (IC(50) 33 μM) and appears to be a rare example of a bioactive organometallic peptide conjugate. Experiments on CHO cells deficient in DNA repair suggested that unrepaired DNA damage contributes to the cytotoxicity of the Arg(5) and Arg(8) conjugates. These studies demonstrate the potential for use of cell- and nucleus-penetrating peptides in targeting organometallic arene anticancer complexes.  相似文献   

15.
Li X  Zhang L  Lu J  Chen Y  Min J  Zhang L 《Bioconjugate chemistry》2003,14(1):153-157
The specific binding ability and biostability of PNA (peptide nucleic acid) with DNA or RNA make PNA not only a good tool for the studies of molecular biology but also the candidate for gene-targeting drugs. However, the main obstacle for its potential usage as a therapeutic is the low cell uptake caused by the poor cell membrane permeability. In this paper the hydrophobic pentadecapeptide and two signal peptide mimics, hexa- and decapeptides ending with a positively charged amino acid, were proposed as the linked carrier for the transportation of PNA T10 through the cell membrane; stable spin label was coupled to the peptide-PNA conjugate so that the ESR measurements can be used for the assessment of their transmembrane movements. The syntheses of spin-labeled peptide-PNA conjugates were carried out on MBHA resin with Boc strategy. The cell membrane permeability of the spin-labeled conjugates of peptides and PNA can be determined with ESR, during the incubation of erythrocyte with the samples. According to ESR measurements, the three conjugates exhibit enhanced uptake into erythrocytes. The hexa- and decapeptide-modified PNA showed suitable water solubility. The peptide-PNA conjugates retained their binding ability to complementary DNA. The results suggest that peptide modification of PNA might be a promising solution for improving cell membrane permeability toward PNA.  相似文献   

16.
Cell‐penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF)3K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration‐dependent manner, and an additional peptide (TP‐10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF)3K, and TP‐10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens.  相似文献   

17.
Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide.  相似文献   

18.
Despite numerous investigations, the important structural features of Cell Penetrating Peptides (CPPs) remain unclear as demonstrated by the difficulties encountered in designing new molecules. In this study, we focused our interest on Penetratin and Transportan and several of their variants. Penetratin W48F and Penetratin W48F/W56F exhibit a reduced and a complete lack of cellular uptake, respectively; TP07 and TP10 present a similar cellular uptake as Transportan and TP08, TP13 and TP15 display no or weak internalization capacity. We applied the algorithmic method named PepLook to analyze the peptide polymorphism. The study reveals common conformational characteristics for the CPPs and their permeable variants: they all are polymorphic. Negative, non permeable, mutants share the opposite feature since they are monomorphic. Finally, we support the hypothesis that structural polymorphism may be crucial since it provides peptides with the possibility of adapting their conformation to medium hydrophobicity and or to partner diversity.  相似文献   

19.
Rerouting the splicing machinery with steric-block oligonucleotides (ON) might lead to new therapeutic strategies in the treatment of diseases such as beta-thalassemia, Duchenne muscular dystrophy, or cancers. Interfering with splicing requires the sequence-specific and stable hybridization of RNase H-incompetent ON as peptide nucleic acids (PNA) or phosphorodiamidate morpholino oligomers (PMO). Unfortunately, these uncharged DNA mimics are poorly taken up by most cell types and conventional delivery strategies that rely on electrostatic interaction do not apply. Likewise, conjugation to cell penetrating peptides (CPPs) as Tat, Arg9, Lys8, or Pen leads to poor splicing correction efficiency at low concentration essentially because PNA- and PMO-CPP conjugates remain entrapped within endocytotic vesicles. Recently, we have designed an arginine-rich peptide (R-Ahx-R)4 (with Ahx for aminohexanoic acid) and an arginine-tailed Penetratin derivative which allow sequence-specific and efficient splicing correction at low concentration in the absence of endosomolytic agents. Both CPPs are undergoing structure-activity relationship studies for further optimization as steric-block ON delivery vectors.  相似文献   

20.
Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway and therefore mechanisms that promote endosomal escape (or avoid the endosomal route) are required for improving bioavailability. A variety of auxiliary agents (chloroquine, calcium ions, or lipophilic photosensitizers) has this effect, but improved, unaided delivery would be highly advantageous in particular for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates that the lipophilic domain increases the endosomal uptake as well as promoting significantly endosomal escape. These results provide a novel route for improving the (cellular) bioavailability of larger hydrophilic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号