首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Saccharomyces cerevisiae centromeric DNA is packaged into a highly nuclease-resistant chromatin core of approximately 200 base pairs of DNA. The structure of the centromere in chromosome III is somewhat larger than a 160-base-pair nucleosomal core and encompasses the conserved centromere DNA elements (CDE I, II, and III). Extensive mutational analysis has revealed the sequence requirements for centromere function. Mutations affecting the segregation properties of centromeres also exhibit altered chromatin structures in vivo. Thus the structure, as delineated by nuclease digestion, correlated with functional centromeres. We have determined the contribution of histone proteins to this unique structural organization. Nucleosome depletion by repression of either histone H2B or H4 rendered the cell incapable of chromosome segregation. Histone repression resulted in increased nuclease sensitivity of centromere DNA, with up to 40% of CEN3 DNA molecules becoming accessible to nucleolytic attack. Nucleosome depletion also resulted in an alteration in the distribution of nuclease cutting sites in the DNA surrounding CEN3. These data provide the first indication that authentic nucleosomal subunits flank the centromere and suggest that nucleosomes may be the central core of the centromere itself.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Benbow SZ  DuBois ML 《FEBS letters》2008,582(4):497-502
Alterations in protein composition or dosage within chromatin may trigger changes in processes such as gene expression and DNA repair. Through transposon mutagenesis and targeted gene deletions in haploids and diploids of Saccharomyces cerevisiae, we identified mutations that affect telomeric silencing in genes encoding telomere-associated Sir4p and Yku80p and chromatin remodeling ATPases Ies2p and Rsc1p. We found that sir4/SIR4 heterozygous diploids efficiently silence the mating type locus HMR but not telomeres, and diploids heterozygous for yku80 and ies2 mutations are inefficient at DNA repair. In contrast, strains heterozygous for most chromatin remodeling ATPase mutations retain wild-type silencing and DNA repair levels. Thus, in diploids, chromatin structures required for DNA repair and telomeric silencing are sensitive to dosage changes.  相似文献   

10.
11.
12.
13.
14.
15.
16.
The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.  相似文献   

17.
18.
19.
20.
In the budding yeast Saccharomyces cerevisiae, heterochromatic gene silencing has been found within HMR and HML silent mating type loci, the telomeres, and the rRNA-encoding DNA. There may be boundary elements that regulate the spread of silencing to protect genes adjacent to silenced domains from this epigenetic repressive effect. Many assays show that specific DNA regulatory elements separate a euchromatic locus from a neighboring heterochromatic domain and thereby function as a boundary. Alternatively, DNA-independent mechanisms such as competition between acetylated and deacetylated histones are also reported to contribute to gene insulation. However, the mechanism by which boundaries are formed is not clear. Here, the characteristics and functions of boundaries at silenced domains in S. cerevisiae are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号