首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turkey gizzard smooth muscle light chain kinase was purified by affinity chromatography on calcium dependent regulator weight of 125,000 +/- 5,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When myosin light chain kinase is incubated with the catalytic subunit of cyclic AMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of myosin kinase. Brief tryptic digestion of the 32P-labeled myosin kinase liberates a single radioactive peptide with a molecular weight of approximately 22,000. Phosphorylation of myosin kinase results in a 2-fold decrease in the rate at which the enzyme phosphorylates the 20,000-dalton light chain of smooth muscle myosin. These results suggest that cyclic AMP has a direct effect on actin-myosin interaction in smooth muscle.  相似文献   

2.
An insoluble phosphoprotein of rat brain acquires radioactivity from inorganic phosphate more rapidly during sleep than during wakefulness. It was purified in two ways. The first was solvent delipidation of brain tissue followed by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis. The second was sucrose gradient centrifugation of a brain homogenate to remove myelin, and gel filtration on Sephadex G-100 and adsorption chromatography on DEAE-Sephadex in the presence of sodium deoxycholate. The products were homogeneous within the limits of the analytical methods used. The apparent molecular weight of the phosphoprotein was 28,000 on sodium dodecyl sulfate polyacrylamide gels, but was much higher in the presence of sodium deoxycholate. The protein had a high content of aspartic and glutamic acids compared to basic amino acids. Analysis of a base hydrolysate, as well as studies of the kinetics of hydrolysis, showed that the radioactive phosphorus was attached to histidine. The NH2-terminal residue was identified as isoleucine. The phosphoprotein purified by the second method was enzymatically active. When it was incubated in vitro with a 32P-labeled supernatant fraction from rat brain (and later with glucose [6-32P]phosphate), a radioactive phosphorylated protein intermediate was formed. Exploration of the several enzymatic activities of the preparation indicated close correspondence to those reported for the glucose-6-phosphatases of liver and kidney. Glucose-6-phosphatase activity was found in all parts of the brain in the membranous subcellular fractions of neurons. It was shown to be co-purified with the sleep-related phosphoprotein. This report constitutes, we believe, the first complete purification of glucose-6-phosphatase from any tissue and an instance in which a change in the state of a cerebral enzyme has been linked to a normal change in the physiological state of the brain.  相似文献   

3.
A method is described for separation of ionic detergent-solubilized proteins by ion-exchange chromatography. This method has been developed for purification of two phosphoproteins (Mr 19,000 and 30,000) from 32Pi-prelabeled, isoproterenol-stimulated rat parotid tissue and is based on the observation that, in the presence of urea and Nonidet-P40, ionic detergent-solubilized proteins can be adsorbed by ion exchangers according to their own charge. After adsorption, proteins were eluted with a stepwise gradient of NaCl in a urea-containing buffer. By the procedure described, the 30 kDa phosphoprotein was freed from other 32P-labeled substances; and it was identified as ribosomal protein S6 that was phosphorylated at some serine residues. The method is generally applicable and especially suited for preliminary purification of hydrophobic proteins subjected to analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

4.
Purified rat liver plasma membranes were incubated for 0-60 min with [gamma-32P]ATP and analysis of 32P-labeled proteins by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed the presence of two shifted kinetic phenomena. The use of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinases, allowed the identification of one as the endogenous protein phosphorylation. The other was shown to be the labeling of two phospho-intermediate forms of alkaline phosphatase (orthophosphoric monoester phosphohydrolase (alkaline optimum, EC 3.1.3.1.], which have apparent molecular masses of 151 and 135 kDa. Bromolevamisole, a potent inhibitor of the enzyme, stabilized these phospho-intermediates, and consequent on this inhibition the labelling of a 18 kDa phosphoprotein was augmented. So, when alkaline phosphatase was studied in its native plasma membrane environment, a specificity of this enzyme over the endogenous phosphoproteins was established.  相似文献   

5.
Phosphoprotein Component of Vaccinia Virions   总被引:13,自引:11,他引:2       下载免费PDF全文
The recent discovery of a protein kinase activity in vaccinia virions led us to search for a viral protein which is phosphorylated in vivo. Vaccinia virus was radioactively labeled by infecting cells in the presence of (32)P(1). A phosphoprotein was isolated from purified delipidated virions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The phosphoprotein appeared to be a specific viral component induced after infection. More than 60% of the phosphoprotein was associated with viral cores. The electrophoretic mobility of the protein suggested that it has a molecular weight of 11,000 to 12,000. Phosphoserine was liberated by acid hydrolysis and identified by electrophoresis with known standards. Tryptic digests of the purified phosphoprotein were analyzed by two-dimensional electrophoresis and chromatography on thin-layer cellulose plates, and a single major phosphopeptide was resolved. The high selectivity of phosphorylation suggested that the process has a specific function.  相似文献   

6.
This report describes the cloning and characterization of rat leukocyte common antigen-related protein (rLAR), a receptor-like protein tyrosine phosphatase (PTPase). The recombinant cytoplasmic PTPase domain was expressed at high levels in bacteria and purified to homogeneity. Kinetic properties of the PTPase were examined along with potential modulators of PTPase activity. Several sulfhydryl-directed reagents were effective inhibitors, and a surprising distinction between iodoacetate and iodoacetamide was observed. The latter compound was an extremely poor inhibitor when compared to iodoacetate, suggesting that iodoacetate may interact selectively with a positive charge at or near the active site of the enzyme. Site-directed mutants were made at 4 highly conserved cysteine residues found at positions 1434, 1522, 1723, and 1813 within the protein. The Cys-1522/Ser mutation resulted in a 99% loss of enzymatic activity of the pure protein. This observation is consistent with greater than 99% of the PTPase activity being found in the first domain of the PTPase and demonstrates the critical importance of this cysteine residue in catalysis. The recombinant C1522S mutant phosphatase could also be phosphorylated in vitro by protein kinase C and p43v-abl tyrosine kinase. When pure recombinant PTPase was mixed with 32P-labeled tyrosine substrate and then rapidly denatured, a 32P-labeled enzyme intermediate could be trapped and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The catalytically inactive C1522S mutant did not form the phosphoenzyme intermediate.  相似文献   

7.
Y S Ahn  Y C Choi  I L Goldknopf  H Busch 《Biochemistry》1985,24(25):7296-7302
A 125-kilodalton (kDa) phosphoprotein was isolated from nucleoli of Novikoff hepatoma cells in the presence of various inhibitors of proteases, alkaline phosphatase, and RNase. This protein was the most highly phosphorylated protein found thus far in the nucleolus. The half-life of [32P]phosphate in the 125-kDa phosphoprotein was approximately 60 min. Amino acid analysis of the protein showed it had a high serine content (15.5 mol %), a high glutamine plus glutamic acid content (15.5 mol %), and a high lysine content (10.3 mol %). Phosphoserine was the only phosphorylated amino acid identified. After alkaline hydrolysis of the 32P-labeled protein, ribonucleotides were found which accounted for approximately 8.5% of the [32P]phosphate. After cytidine 3',5'-[32P]diphosphate ([32P]pCp) labeling by RNA ligase, several oligoribonucleotide sequences were purified including GGGCOH and GGGGCOH. The binding of oligonucleotides to peptides was stable under denaturing fractionation conditions including 6 M urea treatment and incubation at 100 degrees C for 10 min in sodium dodecyl sulfate and beta-mercaptoethanol. Furthermore, when nucleotide-peptide complex was treated with ribonuclease T2 followed by snake venom phosphodiesterase, the junctional nucleotide pCp was released. These results suggest that one or more ribonucleotides are covalently bound to the 125-kDa phosphoprotein.  相似文献   

8.
We have purified to apparent homogeneity a phosphoprotein from rat adipose tissue which is rapidly phosphorylated in vitro by ATP. The native phosphoprotein has an approximate sedimentation coefficient of 14.8 S. On sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis, the protein dissociated into identical subunits of Mr = 128,000. A phosphoprotein with similar properties was also isolated from liver. Purified phosphoproteins from fat cells and liver had ATP-citrate lyase activity and co-migrated on sodium dodecyl sulfate gels with fat cell phosphoprotein-2, the phosphorylation of which is increased by incubating fat cells with insulin. The phosphoamino acid residue of the cells with insulin. The phosphoamino acid residue of the phosphoprotein was identified as tau-phosphohistidine. These evidences suggest that fat cell phosphoprotein-2 is ATP-citrate lyase.  相似文献   

9.
Phosphorylated NADP+-isocitrate dehydrogenase (EC 1.1.1.42) has been purified to electrophoretic homogeneity from in vivo 32P-labeled Escherichia coli. The cells used as the source of phosphorylated enzyme were harvested 1 h after the addition of 5 mCi of [32P]orthophosphoric acid and 25 mM sodium acetate to cultures grown to early stationary phase on a low phosphate medium with limiting glucose. Double immunodiffusion and autoradiography demonstrated immunological identity between the 32P-labeled NADP+-isocitrate dehydrogenase and the enzyme isolated from glucose-grown E. coli. The phosphoenzyme had an apparent subunit molecular weight of 51,000 as determined by denaturing acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and the radioactivity co-electrophoresed with NADP+-isocitrate dehydrogenase activity when purified enzyme was subjected to nondenaturing gel electrophoresis. [32P]Phosphoserine was identified following partial acid hydrolysis of the purified phosphoenzyme.  相似文献   

10.
Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C) isolated from rat brain cytosol undergoes autophosphorylation in the presence of Mg2+, ATP, Ca2+, phosphatidylserine, and diolein. Approximately 2-2.5 mol of phosphate were incorporated per mol of the kinase. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, the phosphorylated kinase showed a single protein band of Mr = 82,000 compared to the Mr = 80,000 of the nonphosphorylated enzyme. Analysis of the 32P-labeled tryptic peptides derived from the autophosphorylated kinase by peptide mapping revealed that multiple sites were phosphorylated. Both serine and threonine residues were found to be labeled with 32P. Limited proteolysis of the autophosphorylated kinase with trypsin resulted in the conversion of the kinase into a phospholipid- and Ca2+-independent form. Two major 32P-labeled fragments, Mr = 48,000 and 38,000, were formed as a result of proteolysis, suggesting that the catalytic domain and possibly the Ca2+- and phospholipid-binding region were both phosphorylated. Protein kinase C autophosphorylation has a Km for ATP (1.5 microM) about 10-fold lower than that for phosphorylation of exogenous substrates. The kinetically preferred autophosphorylation appears to be an intramolecular reaction. The autophosphorylated protein kinase C, unlike the protease-degraded enzyme, still depends on Ca2+ and phospholipid for maximal activity. However, the autophosphorylated form of the kinase has a lower Ka for Ca2+ and a higher affinity for the binding of [3H]phorbol-12, 13-dibutyrate. These findings suggest that autophosphorylation of protein kinase C may be important in the regulation of the enzymic activity subsequent to signal transduction.  相似文献   

11.
When soluble extracts of the extreme acidothermophilic archaeon Sulfolobus solfataricus were incubated with [gamma-(32)P]ATP, several proteins were radiolabeled. One of the more prominent of these, which migrated with a mass of approximately 46 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was purified by column chromatography and SDS-PAGE and subjected to amino acid sequence analysis via both the Edman technique and mass spectroscopy. The best match to the partial sequence obtained was the potential polypeptide product of open reading frame sso0417, whose DNA-derived amino acid sequence displayed many features reminiscent of the 2,3-diphosphoglycerate-independent phosphoglycerate (PGA) mutases [iPGMs]. Open reading frame sso0417 was therefore cloned, and its protein product was expressed in Escherichia coli. Assays of its catalytic capabilities revealed that the protein was a moderately effective PGA mutase that also exhibited low levels of phosphohydrolase activity. PGA mutase activity was dependent upon the presence of divalent metal ions such as Co(2+) or Mn(2+). The recombinant protein underwent autophosphorylation when incubated with either [gamma-(32)P]ATP or [gamma-(32)P]GTP. The site of phosphorylation was identified as Ser(59), which corresponds to the catalytically essential serine residue in bacterial and eucaryal iPGMs. The phosphoenzyme intermediate behaved in a chemically and kinetically competent manner. Incubation of the (32)P-labeled phosphoenzyme with 3-PGA resulted in the disappearance of radioactive phosphate and the concomitant appearance of (32)P-labeled PGA at rates comparable to those measured in steady-state assays of PGA mutase activity.  相似文献   

12.
The adenovirus type 2-coded single-stranded DNA binding protein (DBP) was shown to be a phosphoprotein and to exist in at least two forms that differ in mobility by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After a 30-min pulse with [35S]methionine or 32PO4, 35S- or 32P-labeled DBP had a nominal molecular weight of 74,000 whereas after a 30-min label followed by a 20-h chase, 35S- and 32P-labeled DBP had a nominal molecular weight of 77,000. Both large and small forms of 35S- and 32P-labeled DBP bound to single-stranded DNA-cellulose columns and were eluted by 0.4 to 0.6 M NaCl; both forms also were immunoprecipitated by antiserum against adenovirus type 1-simian virus 40-induced tumor cells (this antiserum contains antibodies against DBP) and by monospecific antiserum against 95 to 99% purified DBP. With highly purified 32P-DBP labeled 7 to 10 h postinfection, it was shown that the 32P radioactivity was firmly associated with protein material (i.e., not contaminating nucleic acids or phospholipids) and had properties expected of a phosphoester of an amino acid; paper electrophoresis of acid hydrolysates of this preparation identified phosphoserine but not phosphothreonine. Phosphoserine but not phosphothreonine was also identified in acid hydrolysates of another preparation of 32P-DBP labeled for 30 min, chased for 20 h, and then immunoprecipitated by adenovirus type 1-simian virus 40 antiserum.  相似文献   

13.
A metabolic precursor to the major phosphoprotein of Piry virus (NSv) has been identified in extracts of Piry virus-infected L cells. The conversion of the precursor NSi to NSv occurs with a half-life of 20 min and is independent of continued protein synthesis. NSi has a greater electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than does the product NSv, suggesting an increase in molecular weight during maturation. The conversion is unaffected by cyclic AMP, cyclic GMP, or by theophilline and cordycepin. No decrease in isoelectric point of NSv relative to NSi was observed on isoelectric focusing acrylamide gels. These latter observations suggest that NSi and NSv do not differ in extent of phosphorylation. We also report, without further characterization, the identification of another phosphoprotein in Piry virus-infected cells having an electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis just slightly greater than the nucleocapsid N protein.  相似文献   

14.
Protein tyrosine kinase was purified extensively from a 30,000 X g particulate fraction of bovine spleen by a procedure involving four column chromatographies: DEAE-Sepharose, polyamino acids affinity, hydroxylapatite, and Sephacryl S-200 molecular sieving. The purification resulted in more than 3,000-fold enrichment in [Val5]angiotensin II phosphorylation activity (specific activity 202 nmol/min/mg). All column chromatography profiles showed single protein tyrosine kinase activity peaks with the exception of that of affinity chromatography, where about 50% of the enzyme activity appeared with the breakthrough fraction; only the bound enzyme was further purified. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of a purified sample phosphorylated in the presence of [gamma-32P]ATP revealed the presence of a single phosphorylated polypeptide of molecular weight 50,000 which represents about 40% of total protein. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions showed that protein tyrosine kinase activity co-migrated with the phosphoprotein. Stoichiometry of the phosphorylation of the 50-kDa polypeptide was found to be 1.0 mol/mol. The purified sample did not appear to contain phosphotyrosine protein phosphatase activity. Both casein and histone could be phosphorylated by the purified sample, and the phosphorylation occurred only at tyrosine residue, suggesting that there was no protein serine and threonine kinase contamination.  相似文献   

15.
UDP-Glc:dolichol phosphate glucosyltransferase from lactating rat mammary gland has been partially purified by a combination of (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography on DEAE-TSK, and affinity chromatography. The partially purified enzyme exhibited several protein bands when examined by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions; among these, a 35-kDa polypeptide was quite prominent and appeared to be enriched during purification. Photoaffinity labeling of the partially purified enzyme preparation with 5-azido-[beta-32P]UDP-Glc identified a 35-kDa polypeptide. Labeling of a solubilized enzyme preparation from crude and stripped microsomes also revealed a 35-kDa band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Photoinsertion of the probe in this polypeptide is enhanced by the presence of dolichol phosphate and Mg2+. Competition studies with UDP-Glc, UDP-glucuronic acid, other sugar nucleotides, and Glc-1-phosphate provide evidence to validate the specificity of photoaffinity labeling. These studies indicate that this 35-kDa polypeptide is involved in the synthesis of dolichol-P-Glc in rat mammary tissue. The possibility that this polypeptide may represent glucosyltransferase has been discussed.  相似文献   

16.
Glucocorticoid-sensitive L-cells were cultured for 18 h in the presence of [32P]orthophosphate and steroid-binding proteins of cytosol were separated by affinity chromatography and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing. Cytosol contains a major phosphoprotein of Mr = 92,000 and a minor phosphoprotein of Mr = 100,000, both of which bind glucocorticoids in a stereospecific, high affinity manner and have the same Mr as glucocorticoid receptor species that have been covalently labeled with the site-specific affinity ligand [3H] 9 alpha-fluoro-16-methyl-11 beta,17 alpha,21-trihydroxypregna-1, 4-diene-3,20-dione 21-mesylate. Cytosol from 32P-labeled, glucocorticoid-resistant L-cells possessing 5% of the steroid-binding capacity of sensitive cells contains very little of the Mr = 92,000 phosphoprotein and none of the Mr = 100,000 phosphoprotein. These observations provide strong evidence that the glucocorticoid receptor is phosphorylated by intact L-cells. The Mr = 92,000 protein is phosphorylated on serine and it can be resolved into two species using isoelectric focusing, consistent with the proposal that there is more than 1 phosphorylated serine/steroid-binding unit. The glucocorticoid-resistant L-cell line produces a unique phosphoprotein of Mr = 104,000 that is recovered in variable amounts after affinity chromatography. It is not known whether this phosphoprotein is a separate gene product or whether it represents a precursor with weak steroid-binding activity that is not cleaved in the resistant cell to the high affinity, Mr = 92,000 mature receptor form.  相似文献   

17.
Because many growth factor receptors are ligand-activated tyrosine protein kinases, the possibility that growth hormone (GH), a hormone implicated in human growth, promotes tyrosyl phosphorylation of its receptor was investigated. 125I-Labeled human GH was covalently cross-linked to receptors in intact 3T3-F442A fibroblasts, a cell line which differentiates into adipocytes in response to GH. The cross-linked cells were solubilized and passed over a column of phosphotyrosyl binding antibody immobilized on protein A-Sepharose. Immunoadsorbed proteins were eluted with a hapten (p-nitrophenyl phosphate) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The eluate from the antibody column contained an Mr 134,000 125I-GH-receptor complex. A similar result was obtained when the adipocyte form of 3T3-F442A cells was used in place of the fibroblast form. O-Phosphotyrosine prevented 125I-GH-receptor complexes from binding to the antibody column, whereas O-phosphoserine and O-phosphothreonine did not. In studies of GH-promoted phosphorylation in 3T3-F442A fibroblasts labeled metabolically with [32P]Pi, GH was shown to stimulate formation of a 32P-labeled protein which bound to immobilized phosphotyrosyl binding antibodies. The molecular weight of 114,000 obtained for this protein is similar to that expected for non-cross-linked GH receptor. The Mr 114,000 phosphorylated protein could be immunoprecipitated with anti-GH antibody, indicating that GH remained noncovalently bound to this protein during absorption to and elution from the immobilized phosphotyrosyl binding antibody. Phosphoamino acid analysis after both limited acid hydrolysis and extensive base hydrolysis of the Mr 114,000 phosphoprotein confirmed the presence of phosphotyrosyl residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Rat pheochromocytoma (PC12) cells grown in the presence or absence of nerve growth factor (NGF) were pulse-labeled with [35S]methionine or 32Pi, and neurofilament subunits were recovered by immunoprecipitation from cellular extracts. The neurofilament subunits, with apparent molecular masses on sodium dodecyl sulfate-polyacrylamide gels of 68 kDa (light, L), 145 kDa (medium, M), and 200 kDa (heavy, H), were all found to be expressed in PC12 cells grown in the absence and presence of NGF. H was expressed at very low levels and in a form that migrated more rapidly on sodium dodecyl sulfate gels than H from rat brain. M was synthesized as a more rapidly migrating precursor that underwent modification within 3 h after labeling to a slower migrating form that co-migrated with M from rat brain. Analysis of the different M species by two-dimensional gel electrophoresis indicated that they also had different isoelectric points consistent with differences in phosphate content. NGF treatment resulted in increased L synthesis and, to a lesser degree, M synthesis, but had no effect on H synthesis. NGF also increased the stability of the modified form of M. All three subunits were 32P-labeled, and NGF increased the incorporation of 32P into M and H. Neurofilament subunits were also immunoprecipitated from a soluble fraction of [35S]methionine-labeled PC12 cells. This soluble pool of subunits differed from the cytoskeleton-associated pool in the relative proportions of individual subunits, M being the predominant form in the former and L in the latter.  相似文献   

19.
Incubation of purified cyclic guanosine 3':5'-monophospate-dependent protein kinase with [gamma-32P]ATP and Mg2+ led to formation of one 32P-labeled protein, Mr = 75,000, which corresponded to the single protein band detected after polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When electrophoresis was performed without detergent, the labeled protein coincided with the position of cGMP-dependent protein kinase activity. Phosphorylation was enhanced severalfold by either histone or cAMP and was inhibited by the addition of cGMP. Low concentrations of cGMP blocked the stimulatory effects of cAMP or histone (or both). Since neither cAMP-dependent protein kinase nor cGMP-dependent phosphoprotein phosphatase activities were detected in the purified enzyme, we concluded that the cGMP-dependent protein kinase is a substrate for its own phosphotransferase activity and that other protein substrates (histone) and cyclic nucleotides modulate the process of self-phosphorylation.  相似文献   

20.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号