首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ApoE deficiency compromises the blood brain barrier especially after injury   总被引:5,自引:0,他引:5  
BACKGROUND: Apolipoprotein E (apoE) mediates lipoprotein uptake by receptors such as the LDL receptor (LDLR). The isoform apoE4 has been linked to Alzheimer's disease and to poor outcomes after brain injury. Astrocytes that induce blood brain barrier (BBB) properties in endothelium also produce apoE. We decided to investigate the role of apoE in BBB function and in the restoration of BBB after brain injury. MATERIALS AND METHODS: Wild-type (WT) mice and mice deficient in apoE or LDLR were fed normal chow or diets rich in fat and cholesterol. The BBB leakage was determined through injection of Evans blue dye and measurement of the amount of dye extravasated in the brains 3 hours later. Brain injury was induced by applying dry ice directly onto the excised parietal region of the brain. The mice were given 7 days to recover. In some experiments, peroxidase was infused to observe the site of leakage by histology. RESULTS: We found 70% more spontaneous leakage of injected Evans blue dye in the brains of apoE-/- mice than in wild type. This increase in permeability appeared selective for the brain. The leaky BBB in apoE-/- mice may provide an explanation for the neurological deficits seen in these animals. In an established model of BBB leakage induced by trauma (cold injury), the apoE-/- mice showed even more compromised BBB function, compared with WT mice, suggesting that apoE is important for BBB recovery. No deficit in BBB was observed in injured LDLR-/- mice, even on Western Diet. In contrast, higher plasma cholesterol levels in apoE-/- mice further increased BBB leakage after injury. We extracted 5x more Evans blue from these brains than from WT. In the injury model, injection of peroxidase resulted in prominent retention of this protein in the cortex of apoE-/- but not in WT. CONCLUSIONS: Our results show that the combination of loss of apoE function with high plasma cholesterol and especially brain injury results in dramatic BBB defects in the cortex and may explain in part the importance of apoE in Alzheimer's disease and in successful recovery from brain injury.  相似文献   

2.
The blood-brain barrier (BBB) maintains brain homeostasis by limiting entry of substances to the central nervous system through interaction of transmembrane and intracellular proteins that make up endothelial cell tight junctions (TJs). Recently it was shown that the BBB can be modulated by disease pathologies including inflammatory pain. This study examined the effects of chronic inflammatory pain on the functional and molecular integrity of the BBB. Inflammatory pain was induced by injection of complete Freund's adjuvant (CFA) into the right plantar hindpaw in female Sprague-Dawley rats under halothane anesthesia; control animals were injected with saline. Edema and hyperalgesia were assessed by plethysmography and infrared paw-withdrawal latency. At 72 h postinjection, significant edema formation and hyperalgesia were noted in the CFA-treated rats. Examination of permeability of the BBB by in situ perfusion of [14C]sucrose while rats were under pentobarbital anesthesia demonstrated that CFA treatment significantly increased brain sucrose uptake. Western blot analysis of BBB TJ proteins showed no change in expression of zonula occludens-1 (an accessory protein) or actin (a cytoskeletal protein) with CFA treatment. Expression of the transmembrane TJ proteins occludin and claudin-3 and -5 significantly changed with CFA treatment with a 60% decrease in occludin, a 450% increase in claudin-3, and a 615% increase in claudin-5 expression. This study demonstrates that during chronic inflammatory pain, alterations in BBB function are associated with changes in specific transmembrane TJ proteins.  相似文献   

3.
Surfactant proteins-A and -D (SP-A and SP-D) are members of the collectin protein family. Mice singly deficient in SP-A and SP-D have distinct phenotypes. Both have altered inflammatory responses to microbial challenges. To further investigate the functions of SP-A and SP-D in vivo, we developed mice deficient in both proteins by sequentially targeting the closely linked genes in embryonic stem cells using graded resistance to G-418. There is a progressive increase in bronchoalveolar lavage phospholipid, protein, and macrophage content through 24 wk of age. The macrophages from doubly deficient mice express high levels of the matrix metalloproteinase MMP-12 and develop intense but patchy lung inflammation. Stereological analysis demonstrates significant air space enlargement and reduction in alveolar septal tissue per unit volume, consistent with emphysema. These changes qualitatively resemble the lung pathology seen in SP-D-deficient mice. These doubly deficient mice will be useful in dissecting the potential overlap in function between SP-A and SP-D in host defense.  相似文献   

4.
Sepsis remains the leading cause of death in critically ill patients, despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase (COX)-2 is highly upregulated in the intestine during sepsis, and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2(-/-) and COX-2(+/+) BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD(2), or vehicle and stimulated with cytokines. COX-2(-/-) mice developed exaggerated bacteremia and increased mortality compared with COX-2(+/+) mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype, suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1, occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD(2) attenuated cytokine-induced hyperpermeability and zonula occludens-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis.  相似文献   

5.
6.
7.
Formaldehyde concentration was assessed in the brain, cerebrospinal liquor, arterial and venous blood of intact animals and following its intraarterial injections. It is concluded that formaldehyde is capable of penetrating through the blood-brain barrier, with the degree of permeability depending on blood formaldehyde concentration. The distribution of formaldehyde in the blood-brain-cerebrospinal liquor system suggests the presence of both protein-bound and unbound formaldehyde forms in the organism.  相似文献   

8.
Price TO  Samson WK  Niehoff ML  Banks WA 《Peptides》2007,28(12):2372-2381
Nesfatin-1 has recently been identified as a hypothalamic and brain stem peptide that regulates feeding behavior. Here, we determined the ability of nesfatin-1 to cross the blood–brain barrier (BBB) of mice. We used multiple-regression analysis to determine that radioactively labeled nesfatin-1 injected intravenously entered the brain. The entry rate (Ki) of 131I-nesfatin-1 from blood-to-brain was 0.20 ± 0.02 μl/g min. This modest rate of entry was not inhibited by the administration of nonradioactive nesfatin-1, suggesting that BBB transport of nesfatin-1 into the brain is by a nonsaturable mechanism. High performance liquid chromatography (HPLC) and acid precipitation showed that most of the injected radiolabeled nesfatin-1 reached the brain as intact peptide, and capillary depletion with vascular washout revealed that 67% of 131I-nesfatin-1 crossed the BBB to reach the brain parenchyma. Efflux of labeled nesfatin-1 from brain back into blood was by way of bulk flow. These findings demonstrate that nesfatin-1 crosses the BBB in both the blood-to-brain and brain-to-blood directions by nonsaturable mechanisms.  相似文献   

9.
The blood-brain barrier in a reptile, Anolis carolinensis   总被引:1,自引:0,他引:1  
An electron microscopic study was made of the ultrastructure and permeability of the capillaries in the cerebral hemispheres of the lizard, Anolis carolinensis. The brain of Anolis is vascularized by a loop-type pattern consisting exclusively of arteriovenous capillary loops. The ultrastructure of the endothelium and the arrangement of the various layers from the capillary lumen to the central nervous tissue is similar to that of mammals. The endothelial cells form a continuous layer around the lumen and are joined by tight interendothelial junctions. The basal lamina of the endothelium is also continuous and encloses pericyte processes. The cells of the nervous tissue rest directly on the basal lamina of the capillary and are separated from each other by a 200 Å space. Intravenously injected horseradish peroxidase (MW 40,000) and ferritin (MW 500,000) were used to study the permeability of the capillaries. The entry of horseradish peroxidase and ferritin into the intercellular spaces of the brain is restricted by the tightness of the interendothelial junctions. No vesicular transport of either tracer occurs; however, ferritin does enter the endothelial cells in vacuoles. No tracer molecules are present in the basal lamina, pericytes, or nervous tissue. The different responses of the endothelial cell to the tracers used in this study suggest that endocytotic activities of endothelial cells involve different processes. Vacuoles formed by marginal folds, vacuoles formed by endothelial surface projections or deep invaginations of the plasma membrane, 600–800 Å vesicles, and coated vesicles all seem to differ in the nature of the substances which they endocytose.  相似文献   

10.
Using dynamic Magnetic Resonance Imaging (dMRI), blood-brain barrier (BBB) permeability (k(PSrho)) and tissue interstitial leakage space (v(e)) were evaluated in zinc-deficient (ZnDF) male weanling Wistar rats following 3 days exposure to hyperoxia (85% O2). Temporal monitoring of T1-weighted MR image changes, following a bolus intravenous injection of gadolinium-DTPA, allowed estimation of BBB integrity. Three-day exposure of hyperoxia caused a marginal loss of BBB integrity, reflected in a slight increase in kPSrho and v(e), observed in both the animals fed adequate zinc (ZnAL) and pair-fed controls (ZnPF). However, zinc deficiency resulted in a significant increase in both kPSrho and v(e), indicating a severely disturbed BBB. In addition MR-visible free water was elevated in ZnDF brains following hyperoxia treatment indicating that a loss of BBB integrity may be associated with neuronal edema. The diminished BBB integrity may be free-radical mediated as the ratio of oxidized to reduced glutathione (GSSG:GSH) was significantly elevated.  相似文献   

11.
We have studied the initial innate immune response to focal necrotic injury on different sides of the mouse blood-brain barrier by two-photon intravital microscopy. Transgenic mice in which the promoter of the myeloid isoform of lysozyme drives GFP were used to track granulocytes and monocytes. Necrotic injury in the meninges, but not the brain parenchyma, recruited GFP+ cells within minutes that fully surrounded the necrotic site within a day. Recently, it has been suggested that microglial cells and astrocytes cooperate to mount a distinct response to laser injury behind the blood-brain barrier. We followed the microglial response in heterozygous knockin mice in which GFP replaces CX3CR1 coding sequence. Prior to injury, microglial cell bodies were immobile over days, but moved to the laser injury site within 1 day. We followed astrocytes, which have been proposed to cooperate with microglial cells in response to focal injury, using transgenic mice in which glial fibrillary acidic protein promoter drives GFP expression. Before injury fine astrocyte processes permeate the parenchyma. Astrocytes polarized toward the injury in an ATP, connexin hemichannels, and intracellular Ca2+ -dependent process. The astrocytes network established a cytoplasmic Ca2+ gradient that preceded the microglial response. This is consistent with astrocyte-microglial collaboration to mount this innate response that excludes blood leukocytes.  相似文献   

12.
Peptides have the potential to be potent pharmaceutical agents for the treatment of many central nervous system derived maladies. Unfortunately peptides are generally water-soluble compounds that will not enter the central nervous system, via passive diffusion, due to the existence of the blood-brain barrier. Peptides can also undergo metabolic deactivation by peptidases, thus further reducing their therapeutic benefits. In targeting peptides to the central nervous system consideration must be focused both on increasing bioavailability and enhancing brain uptake. To date multiple strategies have been examined with this focus. However, each strategy comes with its own complications and considerations. In this review we assess the strengths and weaknesses of many of the methods currently being examined to enhance peptide entry into the central nervous system.  相似文献   

13.
炎症小体在机体血脑屏障损伤中的作用机制研究进展   总被引:1,自引:0,他引:1  
贾凯翔  曹芯蕊  方仁东 《微生物学报》2022,62(12):4798-4810
血脑屏障(blood-brain barrier,BBB)是一种天然的结构和功能屏障,可抑制病原体的进入并严格控制分子进入脑实质,完整的血脑屏障对于维持中枢神经系统内稳态至关重要。这一屏障功能是由特殊的多细胞结构决定的,每一种组成的细胞类型对血脑屏障的完整性都有不可或缺的贡献。炎症小体(inflammasome)是先天免疫系统最重要的组成部分之一,是一种多蛋白复合体。当病原侵入或机体产生过度免疫反应时,能够激活炎症小体并介导大量细胞因子以及趋化因子分泌。细胞因子及趋化因子表达上调会引起血脑屏障破坏,导致病原突破血脑屏障进入中枢神经系统,引发机体各种脑内疾病。本文就感染性疾病与非感染性疾病这两种情况下,对炎症小体介导机体血脑屏障的损伤进行综述,并列举了当前针对血脑屏障损伤的不同修复方式。  相似文献   

14.
15.
N-linked glycosylation is an essential posttranslational modification of proteins in eukaryotes. The substrate of N-linked glycosylation, dolichol pyrophosphate (DolPP)-GlcNAc(2)Man(9)Glc(3), is assembled through a complex series of ordered reactions requiring the translocation of the intermediate DolPP-GlcNAc(2)Man(5) structure across the endoplasmic-reticulum membrane. A young patient diagnosed with a congenital disorder of glycosylation characterized by an intracellular accumulation of DolPP-GlcNAc(2)Man(5) was found to carry a homozygous point mutation in the RFT1 gene. The c.199C-->T mutation introduced the amino acid substitution p.R67C. The human RFT1 protein shares 22% identity with its yeast ortholog, which is involved in the translocation of DolPP-GlcNAc(2)Man(5) from the cytosolic into the lumenal side of the endoplasmic reticulum. Despite the low sequence similarity between the yeast and the human RFT1 proteins, we demonstrated both their functional orthology and the pathologic effect of the human p.R67C mutation by complementation assay in Deltarft1 yeast cells. The causality of the RFT1 p.R67C mutation was further established by restoration of normal glycosylation profiles in patient-derived fibroblasts after lentiviral expression of a normal RFT1 cDNA. The definition of the RFT1 defect establishes the functional conservation of the DolPP-GlcNAc(2)Man(5) translocation process in eukaryotes. RFT1 deficiency in both yeast and human cells leads to the accumulation of incomplete DolPP-GlcNAc(2)Man(5) and to a profound glycosylation disorder in humans.  相似文献   

16.
Rabies is a lethal disease caused by neurotropic viruses that are endemic in nature. When exposure to a potentially rabid animal is recognized, prompt administration of virus-neutralizing antibodies, together with active immunization, can prevent development of the disease. However, once the nonspecific clinical symptoms of rabies appear conventional postexposure treatment is unsuccessful. Over the last decade, rabies viruses associated with the silver-haired bat (SHBRV) have emerged as the leading cause of human deaths from rabies in the United States and Canada as a consequence of the fact that exposure to these viruses is often unnoticed. The need to treat SHBRV infection following the development of clinical rabies has lead us to investigate why the immune response to SHBRV fails to protect at a certain stage of infection. We have established that measurements of innate and adaptive immunity are indistinguishable between mice infected with the highly lethal SHBRV and mice infected with an attenuated laboratory rabies virus strain. While a fully functional immune response to SHBRV develops in the periphery of infected animals, the invasion of central nervous system (CNS) tissues by immune cells is reduced and, consequently, the virus is not cleared. Our data indicate that the specific deficit in the SHBRV-infected animal is an inability to enhance blood-brain barrier permeability in the cerebellum and deliver immune effectors to the CNS tissues. Conceivably, at the stage of infection where immune access to the infected CNS tissues is limited, either the provision or the development of antiviral immunity will be ineffective.  相似文献   

17.
Klotho protein deficiency leads to overactivation of mu-calpain   总被引:2,自引:0,他引:2  
The klotho mouse is an animal model that prematurely shows phenotypes resembling human aging. Here we report that in homozygotes for the klotho mutation (kl(-/-)), alpha(II)-spectrin is highly cleaved, even before the occurrence of aging symptoms such as calcification and arteriosclerosis. Because alpha(II)-spectrin is susceptible to proteolysis by calpain, we examined the activation of calpain in kl(-/-) mice. m-Calpain was not activated, but mu-calpain was activated at an abnormally high level, and an endogenous inhibitor of calpain, calpastatin, was significantly decreased. Proteolysis of alpha(II)-spectrin increased with decreasing level of Klotho protein. Similar phenomena were observed in normal aged mice. Our results indicate that the abnormal activation of calpain due to the decrease of Klotho protein leads to degradation of cytoskeletal elements such as alpha(II)-spectrin. Such deterioration may trigger renal abnormalities in kl(-/-) mice and aged mice, but Klotho protein may suppress these processes.  相似文献   

18.
The crystallized structure of adult zebra finch (Taeniopygia guttata) song is modifiable if sensory feedback is altered during sound production. Such song plasticity has been studied by examining acoustic modifications to the motif; however, the underlying changes to the vocal motor patterns of these acoustic modifications have not been addressed. Adult birds in two age categories (young=90-120 days or middle aged 150-250 days) that sang crystallized song were used in the experiment. Vocal motor patterns were monitored by recording respiratory air sac pressure before, during, and after song plasticity was induced by partial or complete reduction of phonation (i.e., "partial muting"). Birds were recorded until changes in air sac pressure patterns underlying the song structure were observed (up to 160 days). Young adult birds were more likely to insert shorter duration (<125 ms) expiratory pulses (EPs) into the motif than middle-aged adults. These shorter duration EPs were produced with a unique pressure pattern relative to the intact song, and therefore appeared to be generated by novel motor gestures. Stuttering (atypical repetition of an EP) was observed when these novel EPs were inserted into the motif, regardless of age. The EP of the distance call, which is also a learned vocalization in zebra finches, showed a similar reduction in duration if EPs were also shortened in the song. The emergence of shorter duration EPs was not related to sound production, or nonspecific effects of the surgical procedure, which suggests an age-dependent neural process for song plasticity.  相似文献   

19.
20.
Rapid transferrin efflux from brain to blood across the blood-brain barrier   总被引:4,自引:0,他引:4  
The brain efflux index method is used to examine the extent to which transferrin effluxes from brain to blood across the blood-brain barrier (BBB) following intracerebral injection. Whereas high-molecular-weight dextran is nearly 100% retained in brain for up to 90 min after intracerebral injection in the Par2 region of the parietal cortex of brain, there is rapid efflux of transferrin from brain to blood across the BBB. The efflux of apotransferrin is 3.5-fold faster than the efflux of holo-transferrin. The brain to blood efflux of apotransferrin is completely saturable by unlabeled transferrin, but is not inhibited by other plasma proteins. These studies provide evidence for reverse transcytosis of transferrin from brain to blood across the BBB. As circulating transferrin is known to undergo transcytosis across the BBB in the blood-to-brain direction, these studies support the model of bidirectional transcytosis of transferrin through the BBB in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号