首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relatively slow germination rate of Coniothyrium minitans limits its control efficiency against Sclerotinia sclerotiorum. Pre-germinated conidia of C. minitans enhanced its efficiency significantly: in foliar experiments with oilseed rape, hyphal extension of S. sclerotiorum was inhibited by 68%, while formation of sclerotia was completely inhibited when pre-germinated conidia were applied.Revisions requested 27 July 2004; Revisions received 7 September  相似文献   

2.
Biological control agents (BCAs) Bacillus subtilis QST 713, Coniothyrium minitans CON/M/91-08, Streptomyces lydicus WYEC 108, and Trichoderma harzianum T-22 were evaluated for their efficacy in the reduction of survival of sclerotia and production of apothecia of Sclerotinia sclerotiorum under controlled environments. A growth chamber assay was conducted where 25 sclerotia were buried in pots containing potting soil, and BCAs were drenched into the soil at various concentrations, and five soybean seeds were planted in each pot. The presence and number of S. sclerotiorum apothecia were recorded daily. Sclerotinia sclerotiorum sclerotia were retrieved six weeks after seeding and viability was assessed on water agar plates. All BCAs were effective in reducing S. sclerotiorum inoculum at various efficacies. In general, efficacy was positively correlated with the rate of application. At the rate of application when the efficacy did not change significantly by increasing the rate, the BCAs had various reductions of apothecia and sclerotia. B. subtilis reduced apothecia and sclerotia by 91.2 and 29.6%, respectively; C. minitans reduced apothecia and sclerotia by 81.2 and 50%, respectively; Streptomyces lydicus reduced apothecia and sclerotia by 100 and 29.6%, respectively; Trichoderma harzianum reduced apothecia and sclerotia by 80.5 and 31.7%, respectively. In addition, the commercial strain of C. minitans CON/M/91-08, and a wild Michigan strain of C. minitans W09 were compared for their growth and sclerotial reduction. W09 had faster growth rate than the commercial strain, indicating potential diversities of biological control strains to be studied.  相似文献   

3.
In a study using scanning electron microscopy (SEM), the mode of hyperparasitism of Coniothyrium minitans on its host Sclerotinia sclerotiorum was investigated. The SEM micrographs confirm previous reports, from light microscopic studies, that hyphal tips of C. minitans invade the host hypha by direct penetration, without developing appressoria, and that indentation of the host cell wall at the point of penetration is often evident. There is no functional distinction between amain branch and a side branch hypha of the hyperparasite and tips of either type of hyphae are capable of invading host hyphae by direct penetration.  相似文献   

4.
Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to biocontrol activity of C. minitans in soil is discussed.  相似文献   

5.
Scanning electron microscopy showed that hyphae of Coniothyrium minitans produced appressorium-like swellings when they came in contact with Sclerotinia sclerotiorum in dual culture on PDA. The parasitized hyphae gradually skrank and collapsed, and hyphae of the mycoparasite were found inside the host hyphae. The mycoparasite hyphae grew inter- and intracellularly within the sclerotia of S. sclerotiorum. In the later stages of parasitism, hyphae of the mycoparasite proliferated extensively within the sclerotia and formed pycnidia near the sclerotial surface. At this stage, the sclerotia became flattened, soft and disintegrated. Sclerotia parasitized by C. minitans failed to germinate either myceliogenically or carpogenically.  相似文献   

6.
Coniothyrium minitans is a potential biological control agent of the plant pathogenic fungus Sclerotinia sclerotiorum. In this research, T-DNA insertional transformation of strain ZS-1 of C. minitans mediated by Agrobacterium tumefaciens was obtained, with optimization of spore maturity for transformation. After confirmation by PCR, transformants were subjected to Southern blot analysis, and results showed that more than 82.7% of transformants had single T-DNA insertions, and 12.1% of transformants had two copies T-DNA insertions. The genomic DNA segments of transformants flanking the T-DNA could be amplified from both borders with TAIL-PCR. Four types of mutants were screened and identified from the T-DNA insertional library, which comprised sporulation deficient mutants, pathogenicity deficient mutants, pigment change mutants and antibiotic deficient mutant, and some of the mutants were described; the number and frequency of each type of mutant from the library were calculated, and the frequency of each type is 3.27 x 10(-3), 1.0 x 10(-4), 1.4 x 10(-4), 2.5 x 10(-4), respectively. The successful creation of the T-DNA insertional transformation library may help us to unravel the interaction between a parasite and its host at a molecular level, to clarify the differentiation and development of this fungus, and to analyze and clone functional genes from the biocontrol microorganism in tripartite associations.  相似文献   

7.
Nine fungal isolates [Clonostachys rosea (1), Coniothyrium minitans (1), Trichoderma crassum (1), T. hamatum (4), T. rossicum (1) and T. virens (1)] were tested in two bioassays for their ability to degrade sclerotia and reduce apothecial production and carpogenic infection of cabbage seedlings. C. minitans LU112 reduced apothecial production in both bioassays, with T. virens LU556 significantly reducing apothecial production in the sclerotial parasitism assay. Both isolates also reduced sclerotial viability in this assay to 5% for C. minitans and 22% for T. virens. C. minitans LU112 and T. virens LU556 reduced the infection of cabbage seedlings in the pot bioassay 126 days after sowing but not after 147 days, partly due to ascospore cross-infection between treatments. C. minitans LU112, T. virens LU556 and T. hamatum LU593 as maizemeal-perlite (MP) soil incorporation and transplant potting mix incorporation were evaluated for their ability to control Sclerotinia sclerotiorum disease of cabbage in field experiments. S. sclerotiorum infection of cabbage was reduced by 46–52% and 31–57% by both C. minitans LU112 and T. hamatum LU593 as MP soil incorporations, respectively, in the two field experiments. T. virens LU556 MP soil incorporation and C. minitans LU112 and T. hamatum LU593 transplant potting mix incorporations reduced S. sclerotiorum disease in the first experiment but not in the second experiment. A commercial C. minitans LU112 formulation, C. Mins LU112 WG, also significantly reduced S. sclerotiorum disease by 59%. Soil incorporation of C. minitans and T. hamatum was shown to have potential to control S. sclerotiorum disease in cabbage.  相似文献   

8.
盾壳霉在油菜菌核病菌生物防治中的应用   总被引:9,自引:1,他引:9  
油菜核病菌(Sclerotiniasclerotiorum)是一种世界性病原菌,其分布广、危害大、难根治。盾壳霉(Coniothyriumminitans)是该病原菌的破坏性寄生真菌,可以有效、专一地降低病原菌菌核的形成与萌发,在该病原菌的生物防治方面具有较大的应用潜力。从油菜核盘菌的致病过程与特点、盾壳霉的生长特性、盾壳霉和油菜核盘菌间相互作用的规律及途径等几个方面阐述了盾壳霉对油菜核盘菌的生防特性,讨论了盾壳霉在生产实践中的应用潜力及存在问题,并提出了一些解决问题的可能途径及需要进一步研究的内容与方向 。  相似文献   

9.
10.
植病生防菌盾壳霉的分子生物学研究进展   总被引:3,自引:0,他引:3  
张姝  张永杰 《微生物学通报》2008,35(9):1485-1489
盾壳霉是一种重要的核盘菌寄生茵.近年来,该菌在分子水平的研究取得了一定的进展.本文概述了盾壳霉在产孢调控、与核盘菌互作、遗传转化以及动态检测和遗传多样性等方面的研究现状,并对研究中存在的问题进行了讨论.希望在此基础上能够促进该茵分子生物学研究的不断深入,更好地开发利用该菌的基因资源.  相似文献   

11.
Growth of Coniothyrium minitans on potato dextrose broth was compared with that on an inexpensive molasses-yeast liquid medium at 18-22°C in static culture. Biomass and conidial production were, in general, similar, although the rate of biomass production was quicker and conidial production was slightly greater per unit volume of medium in the molasses-yeast medium. Air-dried biomass from molasses-yeast liquid culture containing mycelia, pycnidia and conidia of C. minitans was mixed (12%, w/w) with kaolin to give a kaolin-biomass dust. The ability of C. minitans to survive and subsequently infect and reduce the viability of sclerotia of Sclerotinia sclerotiorum from this kaolin-biomass dust was found to be little affected by storage for 48 weeks between 4 and 15°C but was decreased by higher storage temperatures. The kaolin-biomass dust preparation did not differ from a standard maizemeal-perlite inoculum of C. minitans in its ability to infect sclerotia of S. sclerotiorum or reduce their viability or carpogenic germination in glasshouse and field pot bioassays. Further, when either inoculum was applied once to glasshouse soil naturally infested with S. sclerotiorum prior to planting three successive crops of lettuce, the pattern of disease control, reduction of sclerotial numbers/ plot, infection of sclerotia, reduction of sclerotial viability and survival in soil were similar for both inocula. The potential for the commercial development of liquid-culture-produced inocula of C. minitans is discussed.  相似文献   

12.
White mold is a major disease in commercial soybean production. An effective measure to reduce the negative effects of Sclerotinia sclerotiorum is the use of bio-fungicides. Strains of Coniothyrium minitans were isolated and efficacy tests against S. sclerotiorum was studied. The efficacy of pycnidiospores sprays of strain N09 (GenBank Accession No HQ908274) from Iowa, USA and strain CON/M/91-08 of Contans® WG were compared in a series of experiments. Sclerotia viability was significantly (P < 0.05) lower in both sclerotia-infested-sterilized-soils (SISS) and sclerotia-infested-unsterilized-soils (SIUS) sprayed with N09 compared with CON/M/91-08 and control at 3°C for 75d and 90d sampling. Similarly, sclerotia viability was significantly (P < 0.05) lower at 23°C for 45, 60 and 75d sampling in SISS and 45, 75 and 90 d sampling in SIUS compared with CON/M/91-08 and control. In contrast, viability of N09 colonies were significantly (P < 0.05) higher than that of CON/M/91-08 both at 3°C and 23°C in SISS across sampling periods. While in SIUS, N09 colonies were significantly higher at 3°C for 15, 30, 45, 75 and 90 d sampling, and at 23°C for 30, 60 and 75 d sampling. Also, (1) N09 had a faster growth rate and produced 1.5 times more pycnidiospores than CON/M/91-08; (2) mycoparasitism by N09 was faster than CON/M/91-08; and (3) co-inoculation of sclerotia and the strains, N09 showed lower sclerotia reproduction than CON/M/91-08. Our data suggest that the new strain N09 has a greater efficiency than CON/M/91-08 in killing sclerotia.  相似文献   

13.
A study was conducted to determine water-assisted dissemination of conidia of Coniothyrium minitans (Cm), a mycoparasite of Sclerotinia sclerotiorum (Ss), in four soils (yellow–brown soil, red-clay soil, fluvo-aquic soil and black soil) and one sand. Conidial suspensions (1×107 conidia mL?1) of Cm were applied to sieved (2 mm screen) soil or sand in glass tubes to test vertical dissemination (VD) and in aluminum boxes to test horizontal dissemination (HD) of conidia. Results showed that conidia of Cm could be disseminated with water and spread in soil or sand for 16–20 cm vertically and for 5–10 cm horizontally. The conidial concentration of Cm was logarithmically reduced with the increase in depth of VD or the distance of HD. Dissemination of Cm conidia in sand was better than that in four soils. Potting experiments were done to further understand the potential of water-assisted dissemination of Cm conidia in suppression of Ss carpogenic germination. Results showed that more apothecia were produced by Ss sclerotia located at the soil surface than those at 5 and 10 cm in depth. The minimum Cm concentration for suppression of Ss carpogenic germination was 1000 conidia g?1 soil. Two-season field trials indicated that water-assisted application of Cm was an effective strategy used at the time for transplanting oilseed rape seedlings to suppress Ss carpogenic germination, thereby reducing the primary infection source for sclerotinia diseases of oilseed rape.  相似文献   

14.
White mould, caused by Sclerotinia sclerotiorum, is a serious disease affecting a wide range of agricultural and horticultural crops. Biological control is one option available to limit its damage. Field experiments to evaluate various concentrations and volumes of Coniothyrium minitans spore suspensions applied to S. sclerotiorum-infected bean crops were conducted in 1997 and 1998. Percentage sclerotia infected by C. minitans were scored. Three replicate experiments were performed in time in 1997 with 21 combinations of isolates, volumes and concentrations, including two controls. In 1998, 22 combinations of isolates, volumes and concentrations plus two controls were used, combined with the absence or presence of a maize buffer, with two replicates for each. Isolates as well as concentration and volume had no effect on infection by C. minitans, but there was a significant effect of total dose (volume×concentration) of inoculum applied over the full range from 100 L ha-1 at 104 conidia mL-1 to 1000 L ha-1 at 107 conidia mL-1. Percentage infected sclerotia increased linearly with log (dose) as well as from 1 to 4 weeks after application of C. minitans, and reached a level of about 100% at high doses under the humid conditions of 1998. Apothecia of S. sclerotiorum developing from sclerotia in collected soil samples from the 1997 experiment showed no significant effect of C. minitans inoculum dose, but there was a significant effect of the replicate experiments. The influence of weather conditions is highlighted, and the implications of the results for cost-effective biocontrol of S. sclerotiorum are discussed.  相似文献   

15.
Coniothyrium minitans (Cm) is a mycoparasite of the phytopathogenic fungus Sclerotinia sclerotiorum (Ss). Ss produces a virulence factor oxalic acid (OA) which is toxic to plants and also to Cm, and Cm detoxifies OA by degradation. In this study, two oxalate decarboxylase genes, Cmoxdc1 and Cmoxdc2, were cloned from Cm strain Chy‐1. OA and low pH induced expression of Cmoxdc1, but not Cmoxdc2. Cmoxdc1 was partially responsible for OA degradation, whereas Cmoxdc2 had no effect on OA degradation. Disruption of Cmoxdc1 in Cm reduced its ability to infect Ss in dual cultures where OA accumulated. Compared with Chy‐1, the Cmoxdc1‐disrupted mutants had reduced expression levels of two mycoparasitism‐related genes chitinase (Cmch1) and β‐1,3‐glucanase (Cmg1), and had no detectable activity of extracellular proteases in the presence of OA. On the other hand, the cultural filtrates of the Cmoxdc1‐disrupted mutants in OA‐amended media showed enhanced antifungal activity, possibly because of increased production of antifungal substances under acidic pH condition resulted from reduced Cmoxdc1mediated OA degradation. This study provides direct genetic evidence of OA degradation regulating mycoparasitism and antibiosis of Cm against Ss, and sheds light on the sophisticated strategies of Cm in interacting with metabolically active mycelia and dormant sclerotia of Ss.  相似文献   

16.
Yang  Xiangdong  Yang  Jing  Li  Haiyun  Niu  Lu  Xing  Guojie  Zhang  Yuanyu  Xu  Wenjing  Zhao  Qianqian  Li  Qiyun  Dong  Yingshan 《Transgenic research》2020,29(2):187-198
Transgenic Research - Pathogenic fungi represent one of the major biotic stresses for soybean production across the world. Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a...  相似文献   

17.
The effect of pollen and senescent petals on the suppression of alfalfa (Medicago sativa L.) blossom blight (Sclerotinia sclerotiorum) by the mycoparasite Coniothyrium minitans was investigated. When incubated at 20°C for 39 h, germination of conidia of C. minitans and ascospores of S. sclerotiorum was 99.9 and 98.6%, respectively, in the presence of alfalfa pollen (9×104 pollen grains mL?1), whereas spore germination of both organisms was &lt;0.5% in the absence of pollen (in water). In the presence of a commercial pollen product, Swiss? pollen granules (mainly bee pollen), germination was 99.6% for C. minitans and 98.3% for S. sclerotiorum when the pollen concentration was 1.0% (w/v). When the pollen concentration was reduced to 0.1% (w/v), germination was reduced to 13.0% for C. minitans and 10.8% for S. sclerotiorum. Tests on detached alfalfa florets showed that the colonization of alfalfa florets by S. sclerotiorum was significantly suppressed by C. minitans in the presence of pollen (1.0% Swiss? pollen granules), especially when C. minitans was inoculated 1-day before S. sclerotiorum. In vivo inoculation tests revealed that the efficacy of C. minitans in the protection of alfalfa pods from the infection by S. sclerotiorum was affected by the time at which C. minitans was applied. When C. minitans was applied on young blossoms of alfalfa at the anthesis stage, pod infection was 96.6% for the treatment of C. minitans+S. sclerotiorum and 99.6% for the treatment of S. sclerotiorum alone. However, when C. minitans was applied on senescent petals of alfalfa at the pod development stage, pod infection was 8.0% for the treatment of C. minitans+S. sclerotiorum compared to 90.8% for the treatment of S. sclerotiorum alone. These results suggest that timing of the application of C. minitans is critical for the mycoparasite to compete with S. sclerotiorum for the source of nutrients from pollen and senescent petals, and for its control of alfalfa blossom blight caused by S. sclerotiorum.  相似文献   

18.
Aims:  To characterize the interaction of Sclerotinia sclerotiorum and S. minor with strains of the mycoparasite and commercial biocontrol agent Coniothyrium minitans using novel perfusion chamber gasket co-culture.
Methods and Results:  Sclerotinia were cultured in perfusion chamber gaskets and then flooded with Coniothyrium conidia. After germination, Coniothyrium failed to show any form of directed growth, making contact with Sclerotinia hyphae in a random manner. In turn, some Coniothyrium hyphae coiled round Sclerotinia counterparts and although no intracellular growth was observed, Coniothyrium proliferated, while the hyphae of Sclerotinia became vacuolated and lost the cytoplasm. When co-cultures of Sclerotinia with Coniothyrium were flooded with FITC-lectins, small difference in fluorescence between the fungi was found with FITC-Con A suggesting that cell walls of both the species exposed mannose. In contrast, Coniothyrium fluoresced poorly in comparison with Sclerotinia when FITC-wheat germ agglutinin was used, indicating a marked paucity of N -acetylglucosamine exposure by cell walls of Coniothyrium, hence reduced exposure to chitinolytic enzyme action.
Conclusions, Significance and Impact of the Study:  The approach employed supported direct sequential microscopic observation of Coniothyrium and Sclerotinia as well as the utilization of representative fluorescent moieties to characterize relative carbohydrate cell wall exposure.  相似文献   

19.
Sclerotia of Sclerotinia sclerotiorum inoculated with pycnidiospores of Coniothyrium minitans were studied by means of light microscopy and transmission and scanning electron microscopy. The hyperparasite penetrated the walls of the rind cells by means of physical pressure and destroyed the cell contents. Penetration of medullary hyphae was by enzymic lysis and physical pressure; there was evidence to suggest that the hyperparasite may coil around the host cells before inserting infection hyphae.  相似文献   

20.
R.D. Reeleder 《BioControl》2004,49(5):583-594
Yeasts are promising biological control agents(BCAs) for a number of plant diseases. Studieswere carried out to evaluate various adjuvantsand nutrients for their ability to supportgrowth of a yeast BCA (Cryptococcusalbidus). Hydroxyethylcellulose (HEC) andinvert emulsions were found to stimulate growthof C. albidus in vitro. Severalcommercial spray adjuvants were compatible withC. albidus although they did not markedlystimulate growth. Other adjuvants were lethalto the yeast. In controlled environmentand field trials, the yeasts C. albidusand Pichia anomala provided low levels ofcontrol of white mould, a disease of bean (Phaseolus vulgaris) caused by the fungus Sclerotinia sclerotiorum. However, they weregenerally inferior in performance when comparedto either the biocontrol fungus Epicoccumnigrum or to the fungicide iprodione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号