首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The present study investigates the fate of the cell-bound IgE by using a well-characterized rat basophilic leukemia cell line and a purifed IgE myeloma protein. Both histamine-releasing and nonreleasing cell lines were examined. In both cases, no evidence for cell-mediated IgE catabolism could be elicited. Both the dissociated IgE and the receptors remained intact for prolonged periods of time, as demonstrated by binding assays. Internalization and/or recycling of membrane-bound IgE could not be demonstrated by E. M. autoradiography. We found only limited time-dependent changes in accessibility to anti-IgE antibody, trypsin, or elution at low pH (2.9 to 3.1). A biphasic dissociation of cell-bound 125I-IgE during incubation in the presence of excess unlabeled IgE was reproducibly observed; the more slowly dissociated IgE was also less readily dissociated at pH 3.4. These studies lead us to conclude that, in vitro, IgE resides in a functional orientation on the surface of RBL-1 cells, for prolonged periods of time.  相似文献   

2.
Summary In order to obtain rapid blood clearance of circulating antibodies (Ab) at a desired time, cross-linking reagents such as second Ab are often employed. Such reagents will generally bind to Ab located at the tumor site as well as free Ab, and we therefore investigated whether the cross-linking of Ab bound to the surface of tumor cells affects the processing of those Ab. Cross-linking was induced in various ways: a polyclonal second Ab [rabbit anti-(mouse IgG)], a monoclonal rat anti-(mouse IgG constant region) Ab, and streptavidin used in conjunction with a biotinylated first Ab. Processing was followed for 3 days, to allow nearly all of the bound Ab to reach its ultimate fate. Results depended strongly on the particular first Ab used. Two basic effects were observed. First, the second Ab efficiently prevented the early dissociation of intact Ab from the cell; once the second Ab bound, there was virtually no dissociation of the primary Ab bound to the cells. For most Ab, where only a small proportion of bound Ab dissociated intact, this effect was relatively small. However, for an unusual Ab, where the majority dissociated intact (L6) the effect of a second Ab in prolonging Ab retention by the cell was dramatic. Second, cross-linking sometimes resulted in markedly accelerated internalization and degradation of the bound Ab, coupled with the release of degradation products into the medium. This process resulted in much shorter retention of the radioisotope by the cell. If a residualizing radiolabel was used,125I-dilactitoltyramine, which is probably trapped within lysosomes after Ab catabolism, the effect of the second Ab in accelerating loss from the cell was largely prevented. We also tested anti-idiotype Ab as cross-linking reagents. In addition to testing anti-idiotype Ab known to react with the cell-bound primary Ab, we also tested antiidiotype Ab not expected to bind to cell-bound Ab, initially as a negative control. Unexpectedly, all anti-indiotype Ab tested induced rapid release of the primary Ab from the cell. This effect was similar to the effect of a large excess of unlabeled Ab, and we attribute it to the blocking of the free binding site of a wobbling Ab, which prevents its rebinding to a second antigen molecule. We conclude that the use of selected anti-idiotype Ab to clear circulating Ab, while not reacting with cell-bound Ab, must be done cautiously. These effects must be taken into consideration in developing procedures that utilize second Ab or other crosslinking agents.  相似文献   

3.
Monensin, like the lysosomotropic amines Chloroquine and methylamine, caused a large accumulation of 125I-EGF in BALB/c-3T3 cells that was due to specific increases in the amount of intracellular intact hormone. However using a pulse-chase paradigm of 125I-EGF accumulation, marked differences were observed between monensin and the amines. When EGF was accumulated in the presence of monensin, there was a gradual loss of cell-bound radioactivity during a chase in the absence of the drug, and the labeled material recovered in. the medium primarily consisted of degraded hormone. The continued presence of monensin in the chase medium substantively prevented the loss of cell bound material, and what little was recovered in the medium consisted of intact 125I-EGF. In contrast, when 125I-EGF was accumulated in the presence of methylamine, predominately intact peptide was lost from the cells at a relatively high rate during the chase whether or not methylamine remained in the medium. When monensin was present in the chase medium following accumulation in the presence of either Chloroquine or methylamine, the loss of intracellular 125I-EGF was essentially blocked.  相似文献   

4.
Cellular binding of 3H-cytochalasin B   总被引:3,自引:0,他引:3  
The binding of tritium-labelled cytochalasin B (3H-CB) to a variety of mammalian cells was investigated. Binding studies revealed near-equilibrium binding of 3H-CB within 5 to 10 minutes, but the equilibrium level was influenced by 3H-CB concentration. Binding kinetics revealed strong temperature dependence. Rapid release of up to 70% of cell-bound 3H-CB molecules occurred when cells were washed and returned to fresh medium without CB. The remaining 30% of cell-bound 3H-CB molecules dissociated more slowly. Equilibrium binding studies on a variety of diploid, heteroploid and transformed cells treated with 1 μg/ml 3H-CB revealed between 1.7 X 107 to 5.3 X 107 3H-CB binding sites per cell. Cellular binding of 3H-CB was not affected by inhibition of cellular energy metabolism, RNA or protein synthesis. Modification of the cell surface by proteases, neuraminidase, hyaluronidase, ribonuclease, or occupation of cell surface saccharide residues by a variety of plant lectins did not significantly alter the pattern of 3H-CB binding. Surface pressure measurements on CB-treated lipid monolayers indicated that CB can interact with lipid molecules. The partition of CB in hydrophobic lipid regions of cell membrane systems as a possible mechanism of cellular binding of CB is discussed. Fractionation of 3H-CB-treated cells revealed binding of 3H-CB to both the plasma membrane and by intracellular membranes.  相似文献   

5.
Glycosaminoglycan synthesis by the early embryonic chick heart   总被引:3,自引:0,他引:3  
Glycosaminoglycans of embryonic chick hearts labeled in situ were characterized by means of labeled precursor incorporation, electrophoretic mobility, sensitivity to testicular hyaluronidase, elution characteristics from CPC-cellulose columns, and hexosamine content. During the initial period of overt cardiac muscle differentiation (approximately stage 10) chondroitin sulfates are not detectable but an undersulfated component is present. Chondroitin sulfate synthesis appears shortly after overt muscle differentiation. Hyaluronate is present both during and after overt myocardial differentiation. Although epimerization of 3H-glucosamine-derived labeled UDP-N-acetyl-d-glucosamine occurs (determined by recovery of incorporated labeled galactosamine), label does not appear in chondroitin sulfate. 3H-Glucosamine is thus a relatively specific precursor for unsulfated glycosaminoglycans, a fact that we exploited in demonstrating their distribution radioautographically. Glycosaminoglycan synthesis was also examined in hearts labeled (a) in isolated organ culture, (b) in situ but exposed directly to the medium by removal of the splanchnopleure. In both cases fully sulfated chondroitin sulfate and chondroitin are not synthesized. Hearts make only hyaluronate and undersulfated chondroitin sulfate.  相似文献   

6.
Development of the cardiac beta adrenergic receptor in fetal rat heart   总被引:2,自引:0,他引:2  
Hearts from 13-day-old rat fetuses were shown to specifically bind 7-3H D, L-norepinephrine. In addition, norepinephrine activated adenylate cyclase in homogenates from the same hearts. The activation of the enzyme was abolished by D, L-propranolol. These data demonstrate the existence of a functionally intact cardiac beta adrenergic receptor at a period of time in fetal life prior to the development of inotropic and chronotropic responses to the catecholamines.  相似文献   

7.
Chylomicron degradation by hearts from fed and fasted rats was studied using a perfusion technique, which allows the separate collection of coronary (Qrv) and interstitial effluent (Qi). Upon perfusion with [3H]-cholesterol-containing chylomicrons the tissue recovery of label was highest in the fasted state, while label recovered in Qi was highest in the fed state. Density gradient centrifugation of Qi indicated that the label was recovered in lipoproteins with higher densities: low density lipoproteins (1.019<d<1.050), high density lipoproteins (1.050<d<1.21) and a fraction of d>1.21. These particles probably represent chylomicron degradation products (remnants and “surface fragments”). Our results indicate that tissue cholesterol uptake during chylomicron degradation may be inhibited in the fed state. Furthermore, the role of the myocyte (or interstitial) lipoprotein lipase in chylomicron degradation is discussed.  相似文献   

8.
A method is described for the efficient incorporation of radioactive arachidonic acid into the lipids of rabbit hearts and kidneys. Infusion of 14C-arachidonate through perfused tissues resulted in the quantitative removel of label from the media. Analysis of the lipids from tissues labeled by this procedure revealed that the majority of the 14C-arachidonate was incorporated into phospholipids. Essentially all of the radioactivity in phosphatidylcholine was found in the 2-position. Subsequent to the 14C-arachidonate infusion, stimulation of prostaglandin biosynthesis (e.g. by bradykinin) resulted in the release of radioactive prostaglandins. This suggests that the 14C-arachidonate is incorporated in a manner such that it is available for homone-stimulated prostaglandin biosynthesis. The method described allows both qualitative and quantitative analysis of arachidonate metabolism in intact tissues and offers significant advantages over other presently used methods.  相似文献   

9.
There are two distinct components of the system which limits the rate at which intact cells of S. cerevisiae C hydrolyze external β-glucosides; one component requires metabolic energy and the other is stereospecific for β-glucosides. The stereospecific component is localized at the cell membrane, as shown by its sensitivity to heavy metal inhibitors which did not penetrate the cell under the conditions used. It was shown that cellobiose-grown cells were able to remove cellobiose from the medium in which they were incubated, and that the cellobiose uptake system was identical to that which limits the patent β-glucosidase activity. In order to test the hypothesis that the system in question was a transport system, for β-glucosides the ability of cellobiose-grown cells to take up 14C-labeled methyl-β-glucoside (MBG) was studied. The induced cells were able to take up MBG-14C and the label could be partially chased out by cold MBG and cellobiose; glucose-grown cells could not incorporate label. However, induced cells could not take up label when incubated with 14C-MBG, thus excluding the hypothesis of transport of intact β-glucosides. It was concluded that the stereospecific membrane component was actually a β-glucosidase, coupled to an energy-dependent transport system for the glucose moiety; the function of the latter was rate-limiting in the over-all activity of the entire system.  相似文献   

10.
During Days 4 to 7 in ovo, beating of embryonic chick hearts becomes progressively more sensitive to inhibition by tetrodotoxin, an inhibitor of fast Na+ channels, and progressively less sensitive to inhibition by D600, an inhibitor of slow Ca2+/Na+ channels. The developmental change in tetrodotoxin sensitivity is not retained in heart cells cultured in monolayer. In contrast, the developmental change in D600 sensitivity is retained. Veratridine-stimulated 22Na+ influx mediated by fast Na+ channels is inhibited by tetrodotoxin (Ki = 1.6 nM) in cells prepared from either 3-day or 12-day embryos. These results suggest that young embryonic hearts contain physiologically inactive Na+ channels. 22Na+ influx mediated by slow Ca2+/Na+ channels is inhibited by D600 with a Ki of 40 nM for cells from 3-day hearts and 8 μM for cells from 12-day hearts. Beating of heart cells in aggregate cultures is also inhibited by D600. Aggregates which have reactivated after inhibition by tetrodotoxin are 10-fold more sensitive to inhibition by D600 than untreated controls. The results suggest that the primary developmental event is a change in slow Ca2+/Na+ channels which reduces their sensitivity to D600 and diminishes their ability to support beating without the activity of the fast Na+ channel.  相似文献   

11.
Matti Nuutinen  Ilmo Hassinen 《BBA》1981,637(3):481-489
The role of extracellular Pi and transmembrane fluxes across the sarcolemma in the regulation of cellular respiration was studied in isolated Langendorff-perfused rat hearts. Extracellular phosphate did not significantly affect the oxygen consumption or cellular phosphorylation potential of the myocardium. K+-induced arrest was used to change the mechanical work load of the heart. Arresting the heart caused a rapid decrease in the unidirectional efflux of phosphate determined by in vitro prelabelling of the intracellular phosphate compounds with 32P and determining the specific radioactivity of the γ-P of ATP, and the label appearance into the perfusion medium. At normal or elevated perfusate phosphate concentration there was a fairly slow net uptake of phosphate. The decrease in phosphate fluxes upon the K+-induced arrest was probably not due to a decrease in the transmembrane Na+ or K+ gradients because a further increase in the perfusate K+ concentration caused an increase in the K+ efflux to the levels observed in contracting hearts. The use of higher than normal concentrations of phosphate necessitated a lowering of the extracellular Ca2+ concentration, which caused a diminution of the oxygen consumption, accompanied by mitochondrial flavoprotein oxidation in the heart. This finding suggested that the extracellular Ca2+ concentration may be involved in the substrate level regulation of mitochondrial metabolism.  相似文献   

12.
A sensitive and reproducible technique for characterization of the binding of 125I-labeled protein ligands to cell surfaces is described. The physical separation of cell-bound and free ligand was accomplished by centrifugation-filtration using an assembly of plastic micro test tubes. This assembly allowed rapid and efficient separation of free and cell-bound ligands with minimal manipulation of the cells.  相似文献   

13.
Cardiac triacylglycerol (TAG) stores buffer the intracellular availability of long chain fatty acid (LCFA) that act as nuclear receptor ligands, substrate for lipotoxic derivatives, and high energy-yield fuel. The kinetic characteristics of TAG turnover and homeostatic mechanisms linking uptake and storage dynamics in hearts have until now remained elusive. This work examines TAG pool dynamics in the intact beating heart, under normal conditions and in response to acute gene expression-induced changes in CD36. Dynamic mode 13C NMR elucidated multiple kinetic processes in 13C-palmitate incorporation into TAG: an initial, saturable exponential component and a slower linear rate. Although previous work indicates the linear component to reflect TAG turnover, we hypothesized the saturable exponential to reflect transport of LCFA across the sarcolemma. Thus, we overexpressed the LCFA transporter CD36 through cardiac-specific adenoviral infection in vivo. Within 72 h, CD36 expression was increased 40% in intact hearts, accelerating the exponential phase relative to PBS-infused hearts. TAG turnover also increased with elevations in adipose triglyceride lipase (ATGL) and a modest increase in diacylglycerol acyltransferase 1 (DGAT1), without a significant expansion of the intracellular lipid pools. The results demonstrate a dynamic system of reciprocal gene regulation that couples saturable LCFA uptake across the sarcolemma to TAG synthesis/lipolysis rates.  相似文献   

14.
Pyridoxal [32P] phosphate was prepared using [γ-32P]ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis.The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

15.
The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO) nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI) and X-ray micro-computed tomography (μCT). SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.  相似文献   

16.
Summary The histogenesis of the dorsal root ganglia of chick embryos (ages 3 to 9 days) was followed in three different tissue culture systems. Organotypic explants included dorsal root ganglia connected to the lumbosacral segment of the spinal cord or isolated explants of the contralateral ganglia. Additionally, dissociated monolayer cultures of ganglia tissue were established. The gradual differentiation of progenitor neuroblasts into distinct populations of large ventrolateral and small dorsomedial neurons was observed in vivo and in vitro. Neurites developed after 3 days in the presence or absence of nerve growth factor in the medium. In contrast, autoradiographic analysis indicates that [3H]thymidine incorporation in neuronal cultures differed significantly from intact embryos. In vivo, the number of neuronal progenitor cells labeled with [3H]thymidine decreased in older embryos; in vitro, uptake of [3H]thymidine label was not observed in ganglionic progenitor cells regardless of the age of the donor embryo or the type of culture system. Lack of proliferation in ganglionic progenitor cells was not due to degeneration because vital staining and uptake of [3H]deoxyglucose indicated that neurons were metabolically active. Furthermore, the block in mitotic activity in vitro was limited to presumptive ganglionic neuronal cells. In the ependyma of the spinal cord segment connected to the dorsal root ganglia, neuronal progenitor cells were heavily labeled as were non-neuronal cells within both spinal cord and ganglia. Our results suggest that in vitro conditions can promote the differentiation of sensory neurons from early embryos (E3.5–4.5) without proliferation of progenitor cells.  相似文献   

17.
The synthesis and release of PGs by the isolated perfused rabbit heart upon bradykinin stimulation results from lipase stimulation which liberates arachidonic acid for PG biosynthesis. The [14C]-labelled fatty acids, arachidonate, linoleate, and oleate, when infused into the heart preparation, were efficiently incorporated into the phospholipid pool in the heart, mostly in the 2-position of phosphatidylcholine. On the other hand, [14C]-palmitate was esterified into both the 1- and the 2-position. Bradykinin released bioassayable PG when injected into the rabbit hearts regardless of which fatty acid label was incorporated into the phospholipid pool. However, only [14C]-arachidonic acid (but not [14C]-linoleate, oleate or palmitate) was liberated from the variously labelled hearts upon hormone stimulation. This selective bradykinin effect on fatty acid release suggests that hormone stimulation either activates a specific lipase that distinguishes different fatty acids in the 2-position or activates lipase which is selectively compartmented with arachidonate-containing phospholipids. Ischemia, on the other hand, appeared to non-specifically stimulate tissue lipases, resulting in a non-selective release of oleic as well as arachidonic acid. A disproportionally large release of arachidonic acid was observed accompanying a relatively small PG (10:1 arachidonate: PG ratio) production during ischemia, as compared to bradykinin (3:1 ratio), suggesting distinct mechanisms for PG biosynthesis induced by bradykinin and ischemia.This work was supported by NIH grants: SCOR-HL-17646, HE-14397, HL-20787, and Experimental Pathology training grant (WH) 5 TO1 GM00897-16. Address correspondence to Dr. Philip Needleman, Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110.  相似文献   

18.
Multipotent germline stem (mGS) cells have been established from neonatal mouse testes. We previously reported that undifferentiated mGS cells are phenotypically similar to embryonic stem cells and that fetal liver kinase 1 (Flk1)+ mGS cells have a similar potential to differentiate into cardiomyocytes and endothelial cells compared with Flk1+ embryonic stem cells. Here, we transplanted these Flk1+ mGS cells into an ischemic heart failure mouse model to evaluate the improvement in cardiac function. Significant increase in left ventricular wall thickness of the infarct area, left ventricular ejection fraction and left ventricular maximum systolic velocity was observed 4 weeks after when sorted Flk1+ mGS cells were transplanted directly into the hearts of the acute ischemic model mice. Although the number of cardiomyocytes derived from Flk1+ mGS cells were too small to account for the improvement in cardiac function but angiogenesis around ischemic area was enhanced in the Flk1+ mGS cells transplanted group than the control group and senescence was also remarkably diminished in the early phase of ischemia according to β-galactosidase staining assay. In conclusion, Flk1+ mGS cell transplantation can improve the cardiac function of ischemic hearts by promoting angiogenesis and by delaying host cell death via senescence.  相似文献   

19.
The contractility of hearts from normal fed rats is decreased by 70% during perfusion with 50 μM chloroquine, which is a potent inhibitor of endogenous lipolysis. In triacylglycerol-rich hearts, obtained by feeding rats rapeseed-oil, chloroquine depresses lipolysis much less, while contractility was found to be inhibited only 30%. In both groups of hearts the effect of chloroquine was decreased by adding fatty acids, prostaglandin E1, the Ca2+Mg2+ ionophore X-537A or more Ca2+ to the perfusion fluid. Norepinephrine and glucagon also stimulate chloroquine-depressed hearts. The conclusion is therefore reached that fatty acids act as Ca2+-vehicles in heart cells and that chloroquine, by inhibiting lipolysis, decreases Ca2+-transport by lowering unesterified fatty acid levels.  相似文献   

20.
Zhang Y  Wang D  Chen M  Yang B  Zhang F  Cao K 《PloS one》2011,6(4):e19012

Background

Induced pluripotent stem cells (iPSCs) are a novel candidate for use in cardiac stem cell therapy. However, their intrinsic tumorigenicity requires further investigation prior to use in a clinical setting. In this study we investigated whether undifferentiated iPSCs are tumorigenic after intramyocardial transplantation into immunocompetent allogeneic recipients.

Methodology/Principal Findings

We transplanted 2×104, 2×105, or 2×106 cells from the established rat iPSC line M13 intramyocardially into intact or infarcted hearts of immunocompetent allogeneic rats. Transplant duration was 2, 4, or 6 weeks. Histological examination with hematoxylin-eosin staining confirmed that undifferentiated rat iPSCs could generate heterogeneous tumors in both intracardiac and extracardiac sites. Furthermore, tumor incidence was independent of cell dose, transplant duration, and the presence or absence of myocardial infarction.

Conclusions/Significance

Our study demonstrates that allogeneic iPSC transplantation in the heart will likely result in in situ tumorigenesis, and that cells leaked from the beating heart are a potential source of tumor spread, underscoring the importance of evaluating the safety of future iPSC therapy for cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号