首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bacterial ghosts are an efficient delivery system for DNA vaccines   总被引:4,自引:0,他引:4  
Mass implementation of DNA vaccines is hindered by the requirement of high plasmid dosages and poor immunogenicity. We evaluated the capacity of Mannheimia haemolytica ghosts as delivery system for DNA vaccines. In vitro studies showed that bacterial ghosts loaded with a plasmid carrying the green fluorescent protein-encoding gene (pEGFP-N1) are efficiently taken up by APC, thereby leading to high transfection rates (52-60%). Vaccination studies demonstrated that ghost-mediated delivery by intradermal or i.m. route of a eukaryotic expression plasmid containing the gene coding for beta-galactosidase under the control of the CMV immediate early gene promoter (pCMVbeta) stimulates more efficient Ag-specific humoral and cellular (CD4(+) and CD8(+)) immune responses than naked DNA in BALB/c mice. The use of ghosts also allows modulating the major Th response from a mixed Th1/Th2 to a more dominant Th2 pattern. Intravenous immunization with dendritic cells loaded ex vivo with pCMVbeta-containing ghosts also resulted in the elicitation of beta-galactosidase-specific responses. This suggests that dendritic cells play an important role in the stimulation of immune responses when bacterial ghosts are used as a DNA delivery system. Bacterial ghosts not only target the DNA vaccine construct to APC, but also provide a strong danger signal, acting as natural adjuvants, thereby promoting efficient maturation and activation of dendritic cells. Thus, bacterial ghosts constitute a promising technology platform for the development of more efficient DNA vaccines.  相似文献   

4.
Bacterial DNA acts as an alert signal for eukaryotic cells through immunostimulatory CpG motifs. These sequences have therapeutic properties promoting protective immune TH1 responses and are recognized by a membrane protein belonging to the Toll-like receptor (TLR) family, named TLR-9. The aim of this study was to test the capability of murine hepatocytes to sense bacterial DNA and to develop antibacterial mechanisms against Salmonella typhimurium. We show that hepatocyte cell lines and mRNA extracts from murine liver constitutively express TLR-9, which is down-regulated by LPS and the mix of IFNgamma, IL-1beta and LPS. Also, we have found that hepatocyte cell lines can sense the presence of bacterial DNA and respond to it by increasing the pool of intracellular peroxides. This results in inhibition of intracellular growth of S. typhimurium when infected cells were incubated in the presence of CpG synthetic oligonucleotides (CpG-ODN). Expression of hepatocyte Mn-SOD is also induced by stimulation with CpG-oligodeoxynucleotides, LPS, and the mix of IFNgamma, IL-1beta and LPS. These results reinforce the prominent role of hepatocytes as a microbial product-responsive cell and the capabilities of CpG-ODN sequences as potent inducers of the innate immune response through the activation of a broad range of cell types.  相似文献   

5.
Dendritic cells have been described as effective antigen presenting cells. Human dentritic cells are highly susceptible to lipopolysaccharide (LPS) tolerance, consisting of a differential deactivation state in which some cellular functions are impaired. LPS tolerance can be experimentally induced in vitro, in which the presence of LPS strongly affects the behavior of cultured dendritic cells. Recombinant proteins obtained from bacterial systems or protein extracts of ectoparasites containing LPS can be used as stimuli to enhance maturation processes in these cells. The present study evaluated the effect of LPS in human dendritic cell cultures, and the activity of polymyxin B as an inhibitor of the LPS effect. Dendritic cells were obtained from peripheral blood monocytes in the presence of IL-4 and GM-CSF, followed by exposure with LPS and PGE2/TNFalpha. Surface markers and cytokine levels were evaluated by flow cytometry. The dendritic cells pre-exposed to single doses of endotoxin demonstrated a reduced capacity to mature, reduced CD83 expression, inhibited secretion of IL-12, TNFalpha, IL-10 and diminished secretion of IL-6. Furthermore, polymyxin B at 10 mg/ml inhibits LPS activity at 1 mg/ml. The maximum polymyxin B concentration with no effect on cellular morphology was 50 mg/ml. Consequently, polymyxin B was determined to be an effective LPS inhibitor in dendritic cell cultures.  相似文献   

6.
Innate cellular production of IFN-gamma is suppressed after repeated exposure to LPS, whereas CpG-containing DNA potentiates IFN-gamma production. We compared the modulatory effects of LPS and CpG on specific cellular and cytokine responses necessary for NK-cell dependent IFN-gamma synthesis. C3H/HeN mice pretreated with LPS for 2 days generated 5-fold less circulating IL-12 p70 and IFN-gamma in response to subsequent LPS challenge than did challenged control mice. In contrast, CpG-pretreated mice produced 10-fold more circulating IFN-gamma without similar changes in IL-12 p70 levels, but with 10-fold increases in serum IL-18 relative to LPS-challenged control or endotoxin-tolerant mice. The role of IL-18 in CpG-induced immune potentiation was studied in splenocyte cultures from control, LPS-conditioned, or CpG-conditioned mice. These cultures produced similar amounts of IFN-gamma in response to rIL-12 and rIL-18. However, only CpG-conditioned cells produced IFN-gamma when cultured with LPS or CpG, and production was ablated in the presence of anti-IL-18R Ab. Anti-IL-18R Ab also reduced in vivo IFN-gamma production by >2-fold in CpG-pretreated mice. Finally, combined pretreatment of mice with LPS and CpG suppressed the production of circulating IFN-gamma, IL-12 p70, and IL-18 after subsequent LPS challenge. We conclude that CpG potentiates innate IFN-gamma production from NK cells by increasing IL-18 availability, but that the suppressive effects of LPS on innate cellular immunity dominate during combined LPS and CpG pretreatment. Multiple Toll-like receptor engagement in vivo during infection can result in functional polarization of innate immunity dominated by a specific Toll-like receptor response.  相似文献   

7.
Bacterial DNA containing unmethylated CpG motifs is a pathogen-associated molecular pattern (PAMP) that interacts with host immune cells via a toll-like receptor (TLR) to induce immune responses. DNA binding and internalization into cells is independent of TLR expression, receptor-mediated, and required for cell activation. The objective of this study was to determine whether exposure of immune cells to bacterial DNA affects DNA binding and internalization. Treatment of RAW264.7 cells with CpG oligodeoxynucleotide (ODN) for both 18 and 42 h resulted in a significant increase in DNA binding, whereas non-CpG ODN had no effect on DNA binding. Enhanced DNA binding was non-sequence-specific, inhibited by unlabeled DNA, showed saturation, was consistent with increased cell surface DNA receptors, and resulted in enhanced internalization of DNA. Treatment with Escherichia coli DNA or lipopolysaccharide (LPS) also resulted in a significant increase in DNA binding, but treatment with interleukin-1alpha, tumor necrosis factor-alpha, or phorbol 12-myristate 13-acetate had no effect on DNA binding. Soluble factors produced in response to treatment with CpG ODN or LPS did not affect DNA binding. These studies demonstrate that one consequence of activating the host innate immune response by bacterial infection is enhanced binding and internalization of DNA. During this period of increased DNA internalization, RAW264.7 cells were hypo-responsive to continued stimulation by CpG ODN, as assessed by tumor necrosis factor-alpha activity. We speculate the biological significance of increasing DNA binding and internalization following interaction with bacterial PAMPs may provide a mechanism to limit an ongoing immune inflammatory response by enhancing clearance of bacterial DNA from the extracellular environment.  相似文献   

8.
Bacterial DNA, primarily through immunostimulatory cytosine-guanine (CpG) motifs, induces the secretion of cytokines and activates a variety of effector cells. We investigated the possibility that CpG motifs might also modulate immunosurveillance by altering cell trafficking through a regional lymph node. Intradermal injection of plasmid DNA induced rapid and prolonged increases in the number of lymphocytes collected in efferent lymph. This effect on cell trafficking was not dependent on the expression of an encoded reporter gene but varied with plasmid construct and required a circular form. Injection of synthetic oligodeoxyribonucleotides containing CpG motifs did not alter lymphocyte trafficking but CpG-enhanced plasmid induced a dose-dependent increase in cell trafficking. Phenotypic analyses revealed that the increase in cell trafficking involved all lymphocyte subpopulations and represented a mass movement of cells. These observations reveal that bacterial DNA, through immunostimulatory CpG motifs, alters immunosurveillance by increasing cell recruitment to a regional lymph node.  相似文献   

9.
The innate immune system evolved to recognize conserved microbial products, termed pathogen-associated molecular patterns (PAMPs), which are invariant among diverse groups of microorganisms. PAMPs are recognized by a set of germ-line encoded pattern recognition receptors (PRRs). Among the best characterized PAMPs are bacterial lipopolysaccharide (LPS), peptidoglycan (PGN), mannans, and other constituents of bacterial and fungal cell walls, as well as bacterial DNA. Recognition of bacterial DNA is the most enigmatic of these, as it depends on a particular sequence motif, called the CpG motif, in which an unmethylated CpG present in a particular sequence context accounts for a potent immunostimulatory activity of CpG DNA. Receptor(s) of the innate immune system that mediate recognition of CpG DNA are currently unknown. Here, we report that recognition of CpG DNA requires MyD88, an adaptor protein involved in signal transduction by the Toll-like receptors (TLRs), essential components of innate immune recognition in both Drosophila and mammals [1,2]. Signaling induced by CpG DNA was found to be unaffected in cells deficient in TLR2 or TLR4, suggesting that some other member of the Toll family mediates recognition of bacterial DNA.  相似文献   

10.
11.
12.
13.
Despite very good safety records, clinical trials using plasmid DNA failed due to low transfection efficiency and brief transgene expression. Although this failure is both due to poor plasmid design and to inefficient delivery methods, here we will focus on the former. The DNA elements like CpG motifs, selection markers, origins of replication, cryptic eukaryotic signals or nuclease-susceptible regions and inverted repeats showed detrimental effects on plasmids’ performance as biopharmaceuticals. On the other hand, careful selection of promoter, polyadenylation signal, codon optimization and/or insertion of introns or nuclear-targeting sequences for therapeutic protein expression can enhance the clinical efficacy. Minimal vectors, which are devoid of the bacterial backbone and consist exclusively of the eukaryotic expression cassette, demonstrate better performance in terms of expression levels, bioavailability, transfection rates and increased therapeutic effects. Although the results are promising, minimal vectors have not taken over the conventional plasmids in clinical trials due to challenging manufacturing issues.  相似文献   

14.
Protective immunity against Mycobacterium tuberculosis infection requires the induction and maintenance of mycobacteria-specific, IFN-gamma-secreting CD4+ and CD8+ T lymphocytes. The development of Th1-like T cells is promoted by the early secretion and synergistic action of interleukin (IL)-12 and IL-18. This study compares the effects of plasmid-encoded IL-12 and IL-18 on the immunogenicity and protective efficacy of a DNA vaccine expressing the M. tuberculosis-secreted protein antigen 85B (DNA-85B). Co-immunization with either IL-12- or IL-18-expressing plasmids augmented the IFN-gamma-secreting T-cell response, and the maximum effect was observed with plasmids encoding both cytokines. Further the IL-12, but not the IL-18-expressing plasmid, significantly increased the protective efficacy of DNA-85B against pulmonary M. tuberculosis infection. Therefore co-administration of plasmid-encoded cytokines provides a potential method for optimizing the protective efficacy of DNA vaccination against tuberculosis.  相似文献   

15.
Savkovic SD  Koutsouris A  Wu G  Hecht G 《BioTechniques》2000,29(3):514-6, 518-20, 522
Pathogenic microbes influence gene regulation in eukaryotic hosts. Reporter gene studies can define the roles of promoter regulatory sequences. The effect of pathogenic bacteria on reporter genes has not been examined. The aim of this study was to identify which reporter genes are reliable in studies concerning host gene regulation by bacterial pathogens expressing type III secretory systems. Human intestinal epithelial cells, T84, Caco-2 and HT-29, were transfected with plasmids containing luciferase (luc), chloramphenicol acetyltransferase (CAT) or beta-galactosidase (beta-gal) as reporter genes driven by the inducible interleukin-8 (IL-8) or constitutively active simian virus 40 (SV40) promoter. Cells were infected with enteropathogenic E. coli or Salmonella typhimurium, and the reporter activity was assessed. Luc activity significantly decreased following infection, regardless of the promoter. The activity of recombinant luc was nearly ablated by incubation with either EPEC or Salmonella in a cell-free system. Activity was partially preserved by protease inhibitors, and immunoblot analysis showed a decreased amount and molecular weight of recombinant luc, suggesting protein degradation. Neither beta-gal nor CAT activity was altered by infection. Disruption of type III secretion prevented the loss of luc activity. We conclude that CAT or beta-gal, but not luc, can be used as reliable reporter genes to assess the impact of pathogenic microbes, especially those expressing type III secretion on host cell gene regulation.  相似文献   

16.
17.
Epithelial cells represent the initial site of bacterial colonization in the respiratory tract. TLR9 has been identified in B cells and CD 123(+) dendritic cells and found to be involved in the recognition of microbial DNA. It was the aim of the study to investigate the role of TLR9 in the host defense reactions of the respiratory epithelium. Respiratory epithelial cell lines (IHAEo(-), Calu-3) or fully differentiated primary human cells as air-liquid interface cultures were stimulated with bacterial DNA or synthetic oligonucleotides containing CpG motifs (CpG oligodeoxynucleotides). Expression of TLR9, cytokines, and human beta-defensin 2 was determined by quantitative RT-PCR or by ELISA. We found that TLR9 is expressed by respiratory epithelial cell lines and fully differentiated primary epithelial cells at low levels. Stimulation of the above-mentioned cells with bacterial DNA or CpG oligodeoxynucleotide resulted in an inflammatory reaction characterized by a dose-dependent up-regulation of cytokines (IL-6, IL-8) and human beta-defensin 2. Up-regulation of NF-kappaB in epithelial cells in response to the CpG motif containing DNA was inhibited by overexpression of a dominant negative form of MyD88. These results provide clear evidence that the human respiratory epithelium is capable of detecting microbial DNA by TLR9. The respiratory epithelium has an important function in triggering innate immune responses and therefore represents an interesting target for anti-inflammatory therapy.  相似文献   

18.
To determine whether the systemic immune activation by CpG DNA could alter airway inflammation, we pretreated mice with either i.v. bacterial DNA (bDNA) or oligonucleotides with or without CpG motifs, exposed these mice to LPS by inhalation, and measured the inflammatory response systemically and in the lung immediately following LPS inhalation. Compared with non-CpG oligonucleotides, i. v. treatment with CpG oligonucleotides resulted in higher systemic concentrations of polymorphonuclear leukocytes, IL-10, and IL-12, but significantly reduced the concentration of total cells, polymorphonuclear leukocytes, TNF-alpha, and macrophage inflammatory protein-2 in the lavage fluid following LPS inhalation. The immunoprotective effect of CpG-containing oligonucleotides was dose-dependent and was most pronounced in mice pretreated between 2 and 4 h before the inhalation challenge, corresponding to the peak levels of serum cytokines. bDNA resulted in a similar immunoprotective effect, and methylation of the CpG motifs abolished the protective effect of CpG oligonucleotides. The protective effect of CpG oligonucleotides was observed in mice with either a disrupted IL-10 or IFN-gamma gene, but release of cytokines in the lung was increased, especially in the mice lacking IFN-gamma. In contrast, CpG DNA did not protect mice with a disrupted IL-12 gene against the LPS-induced cellular influx, even though CpG DNA reduced the release of TNF-alpha and macrophage inflammatory protein-2 in the lung. These findings indicate that CpG-containing oligonucleotides or bDNA are protected against LPS-induced cellular airway inflammation through an IL-12-dependent pathway, and that the pulmonary cytokine and cellular changes appear to be regulated independently.  相似文献   

19.
Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or “CELiD”, DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5×109 Sf9 cells, and 1–15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.  相似文献   

20.
Regulation of osteoclastogenesis by lipopolysaccharide (LPS) is mediated via its interactions with toll-like receptor 4 (TLR4) on both osteoclast- and osteoblast-lineage cells. We have recently demonstrated that CpG oligodeoxynucleotides (CpG ODNs), known to mimic bacterial DNA, modulate osteoclastogenesis via interactions with osteoclast precursors. In the present study we characterize the interactions of CpG ODNs with osteoblasts, in comparison with LPS. We find that, similar to LPS, CpG ODNs modulate osteoclastogenesis in bone marrow cell/osteoblast co-cultures, although in a somewhat different pattern. Osteoblasts express receptors for both LPS and CpG ODN (TLR4 and TLR9, respectively). The osteoblastic TLR9 transmits signals into the cell as demonstrated by NFkappaB activation as well as by extracellular-regulated kinase (ERK) and p38 phosphorylation. Similar to LPS, CpG ODN increases in osteoblasts the expression of tumor necrosis factor (TNF)-alpha and macrophage-colony stimulating factor (M-CSF). The two TLR ligands do not affect osteoprotegerin expression in osteoblasts. CpG ODN does not significantly affect receptor activator of NFkappaB ligand (RANKL) expression, in contrast to LPS, which induces the expression of this molecule. In the co-cultures CpG ODN induces RANKL expression in osteoblasts as a result of the more efficient TNF-alpha induction. CpG ODN activity (modulation of osteoclastogenesis, gene expression, ERK and p38 phosphorylation, and nuclear translocation of NFkappaB) is specific, because the control oligodeoxynucleotide, not containing CpG, is inactive. Furthermore, these effects (unlike the LPS effects) are inhibited by chloroquine, suggesting a requirement for endosomal maturation/acidification, the classic CpG ODN mode of action. We conclude that CpG ODN, upon TLR9 ligation, induces osteoblasts osteoclastogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号