首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of the state of differentiation in serially cultured bovine epithelial lens cells has been investigated. The radioactive labelled soluble proteins were studied by gel filtration and gel electrophoresis. 1. In the lens epithelium on its capsule, preferential synthesis of alpha B2 vs alpha A2 crystallin subunits and synthesis of beta-crystallins (mainly beta Bp) were observed. 2. Epithelial lens cells cultured on plastic Petri dishes for up to 35 divisions still synthesized alpha B2 and beta Bp, but no longer alpha A2. Conversely, the same cells injected into nude mice synthesized alpha B and alpha A, but no beta-crystallin could be detected. 3. The ratio of non-crystallin proteins to crystallin polypeptides increased drastically with the number of cell divisions. Among these proteins, both Mr 45 000 and Mr 57 000 proteins are probably constituents of the water-soluble cytoskeletal proteins, respectively actin and vimentin. A Mr 17 000 polypeptide was observed and its relationship with a metabolic product of alpha-crystallin is proposed. 4. The polymerization process of crystallin polypeptides in these cells was studied and compared with crystallin aggregates found in the lens. Newly synthesized alpha crystallins were readily involved in high molecular aggregates. This process does not seem to require alpha A, since only alpha B was detected. Interestingly, non-crystallin-soluble proteins form the bulk of proteins found in high molecular weight (HMW) polymers. The time course of crystallin aggregate formation, in long-term culture cells, seems to be different for alpha- vs beta-polypeptides. These results allowed us to conclude that bovine epithelial lens cells in vitro, although they do not undergo terminal differentiation into fibers, are not dedifferentiated, since they still express specific features of the epithelium in situ.  相似文献   

2.
Specific receptors for retinol are present in the cytosol fraction of corneal epithelium as demonstrated by sucrose density gradient centrifugation. These appear to be (1) protein in nature (2) of small molecular size (2 S) (3) specific for retinol and (4) present in several species. Assuming a receptor molecular weight of 15 000 and a single mole of retinol bound/mole of receptor protein, the association constant value is 5.26-10(7) with deltaG degrees = -8.53 kcal/mol. 2-S receptors are also observed in stroma and endothelium along with another binding species of approximately 8 S. Binding of [3H]retinol in bovine epithelial cytosol can also be demonstrated by disc gel electrophoresis and gel filtration. Immunodiffusion techniques demonstrate that monkey corneal epithelial and stromal cytosol samples do not contain contaminating serum retinol binding-protein.  相似文献   

3.
We have shown that gelsolin is one of the most prevalent water-soluble proteins in the transparent cornea of zebrafish. There are also significant amounts of actin. In contrast to actin, gelsolin is barely detectable in other eye tissues (iris, lens, and remaining eye) of the zebrafish. Gelsolin cDNA hybridized intensely in Northern blots to RNA from the cornea but not from the lens, brain, or headless body. The deduced zebrafish gelsolin is approximately 60% identical to mammalian cytosolic gelsolin and has the characteristic six segmental repeats as well as the binding sites for actin, calcium, and phosphatidylinositides. In situ hybridization tests showed that gelsolin mRNA is concentrated in the zebrafish corneal epithelium. The zebrafish corneal epithelium stains very weakly with rhodamine-phalloidin, indicating little F-actin in the cytoplasm. In contrast, the mouse corneal epithelium contains relatively little gelsolin and stains intensely with rhodamine-phalloidin, as does the zebrafish extraocular muscle. We propose, by analogy with the diverse crystallins of the eye lens and with the putative enzyme-crystallins (aldehyde dehydrogenase class 3 and other enzymes) of the mammalian cornea, that gelsolin and actin-gelsolin complexes act as water-soluble crystallins in the zebrafish cornea and contribute to its optical properties.  相似文献   

4.
5.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. The protective role of ICDH against heat shock-induced apoptosis in U937 cells was investigated in the control and the cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to heat shock, there was a distinct difference between the control cells and the cells pre-treated with 3mM oxalomalate for 3h in regard to apoptotic parameters, cellular redox status, and mitochondrial function. The oxalomalate pre-treated cells showed significant enhancement of apoptotic features such as activation of caspase-3, up-regulation of Bax, and down-regulation of Bcl-2 compared to the control cells upon exposure to heat shock. This study indicates that ICDH may play an important role in regulating the apoptosis induced by heat shock presumably through maintaining the cellular redox status.  相似文献   

6.
NADP+-dependent isocitrate dehydrogenases (ICDHs) are enzymes that reduce NADP+ to NADPH using isocitrate as electron donor. Cytosolic and mitochondrial isoforms of ICDH have been described. Little is known on the expression of ICDHs in brain cells. We have cloned the rat mitochondrial ICDH (mICDH) in order to obtain the sequence information necessary to study the expression of ICDHs in brain cells by RT-PCR. The cDNA sequence of rat mICDH was highly homologous to that of mICDH cDNAs from other species. By RT-PCR the presence of mRNAs for both the cytosolic and the mitochondrial ICDHs was demonstrated for cultured rat neurons, astrocytes, oligodendrocytes and microglia. The expression of both ICDH isoenzymes was confirmed by western blot analysis using ICDH-isoenzyme specific antibodies as well as by determination of ICDH activities in cytosolic and mitochondrial fractions of the neural cell cultures. In astroglial and microglial cultures, the total ICDH activity was almost equally distributed between cytosolic and mitochondrial fractions. In contrast, in cultures of neurons and oligodendrocytes about 75% of total ICDH activity was present in the cytosolic fractions. Putative functions of ICDHs in cytosol and mitochondria of brain cells are discussed.  相似文献   

7.
Various lines of evidence have shown that ALDH3A1 (aldehyde dehydrogenase 3A1) plays a critical and multifaceted role in protecting the cornea from UV-induced oxidative stress. ALDH3A1 is a corneal crystallin, which is defined as a protein recruited into the cornea for structural purposes without losing its primary function (i.e. metabolism). Although the primary role of ALDH3A1 in the metabolism of toxic aldehydes has been clearly demonstrated, including the detoxification of aldehydes produced during UV-induced lipid peroxidation, the structural role of ALDH3A1 in the cornea remains elusive. We therefore examined the potential contribution of ALDH3A1 in maintaining the optical integrity of the cornea by suppressing the aggregation and/or inactivation of other proteins through chaperone-like activity and other protective mechanisms. We found that ALDH3A1 underwent a structural transition near physiological temperatures to form a partially unfolded conformation that is suggestive of chaperone activity. Although this structural transition alone did not correlate with any protection, ALDH3A1 substantially reduced the inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal and malondialdehyde when co-incubated with NADP(+), reinforcing the importance of the metabolic function of this corneal enzyme in the detoxification of toxic aldehydes. A large excess of ALDH3A1 also protected glucose-6-phosphate dehydrogenase from inactivation because of direct exposure to UVB light, which suggests that ALDH3A1 may shield other proteins from damaging UV rays. Collectively, these data demonstrate that ALDH3A1 can reduce protein inactivation and/or aggregation not only by detoxification of reactive aldehydes but also by directly absorbing UV energy. This study provides for the first time mechanistic evidence supporting the structural role of the corneal crystallin ALDH3A1 as a UV-absorbing constituent of the cornea.  相似文献   

8.
Functional studiessupport the presence of the Na+-HCO3cotransporter (NBC) in corneal endothelium and possibly cornealepithelium; however, molecular identification and membrane localizationhave not been reported. To test whether NBC is expressed in bovine cornea, Western blotting was performed, which showed a single band at~130 kDa for freshly isolated and cultured endothelial cells, but noband for epithelium. Two isoforms of NBC have recently been cloned inkidney (kNBC) and pancreas (pNBC). RT-PCR was run using cultured andfresh bovine corneal endothelial and fresh corneal epithelial total RNAand specific primers for kNBC and pNBC. RT-PCR analysis for pNBC waspositive in endothelium and weak in epithelium. The RT-PCR product wassubcloned and confirmed as pNBC by sequencing. No specific bands forkNBC were obtained from corneal cells. Indirect immunofluorescence andconfocal microscopy indicated that NBC locates predominantly to thebasolateral membrane in corneal endothelial cells. Furthermore,Na+-dependent HCO3 fluxes andHCO3-dependent cotransport with Na+ wereelicited only from the basolateral side of corneal endothelial cells.Therefore, we conclude that pNBC is present in the basolateral membraneof both fresh and cultured bovine corneal endothelium and weaklyexpressed in the corneal epithelium.

  相似文献   

9.
Kim SY  Tak JK  Park JW 《Biochimie》2004,86(8):501-507
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. When exposed to a singlet oxygen-producing system composed of rose bengal (RB) and visible light, ICDH was susceptible to oxidative modification and damage as indicated by the loss of activity and by the formation of carbonyl groups. The structural alterations of modified enzyme were indicated by the increase in susceptibility to proteases and the change in intrinsic fluorescence spectra. Upon exposure to photoactivated RB, a significant decrease in both cytosolic and mitochondrial ICDH activities was observed in HL-60 cells. The singlet oxygen-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition. When we examined the antioxidant role of cytosolic ICDH against singlet oxygen-induced damage with HL-60 cells transfected with the cDNA for mouse cytosolic ICDH in sense and antisense orientations, a clear inverse relationship was observed between the amount of cytosolic ICDH expressed in target cells and their susceptibility to singlet oxygen-mediated oxidative damage.  相似文献   

10.
11.
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. We investigated whether the ICDH would be a vulnerable target of peroxynitrite anion (ONOO-) as a purified enzyme, in intact cells, and in liver mitochondria from ethanol-fed rats. Synthetic peroxynitrite and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a peroxynitrite-generating compound, inactivated ICDH in a dose- and time-dependent manner. The inactivation of ICDH by peroxynitrite or SIN-1 was reversed by dithiothreitol. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. Immunoblotting analysis of peroxynitrite-modified ICDH indicates that S-nitrosylation of cysteine and nitration of tyrosine residues are the predominant modifications. Using electrospray ionization mass spectrometry (ESI-MS) with tryptic digestion of protein, we found that peroxynitrite forms S-nitrosothiol adducts on Cys305 and Cys387 of ICDH. Nitration of Tyr280 was also identified, however, this modification did not significantly affect the activity of ICDH. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by peroxynitrite. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and binding of the hydrophobic probe 8-anilino-1-napthalene sulfonic acid. When U937 cells were incubated with 100 microM SIN-1 bolus, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Using immunoprecipitation and ESI-MS, we were also able to isolate and positively identify S-nitrosylated and nitrated mitochondrial ICDH from SIN-1-treated U937 cells as well as liver from ethanol-fed rats. Inactivation of ICDH resulted in the pro-oxidant state of cells reflected by an increased level of intracellular reactive oxygen species, a decrease in the ratio of [NADPH]/[NADPH + NADP+], and a decrease in the efficiency of reduced glutathione turnover. The peroxynitrite-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

12.
13.
We report on a three dimensional (3D)-organotypic culture in vitro for selective growth and expansion of human corneal epithelial stem cells. Limbal corneal explants were cultured on porous collagen sponges submerged in Epilife medium containing 10% fetal bovine serum. The fragments were analyzed by immunohistochemistry for the expression and distribution of a spectrum of corneal epithelium markers: p63, CK-19, CK-3, Ki-67, pan-cytokeratins and vimentin. Early in culture the epithelium began to exfoliate losing its differentiated high-zone layers into the medium, maintaining only basal and few parabasal cells (mostly both p63 and CK-19 positive), which had remained attached to the specimen. After 14 days a new epithelium was formed displaying an increasing prominence of basal and suprabasal cells that, sliding onto the whole explant, showed the tendency to underlay stromal tissue and infiltrate into the underlaying sponge. After 21 days, sponge and fragments were incubated with trypsin-EDTA and dispersed epithelial cells were pipetted on a feeder monolayer of mitomycin-c-treated murine NIH.3T3 fibroblasts. Colonies of undifferentiated epithelial cells (p63, CK-19 and Ki-67 positive, CK-3 negative) were obtained: their cells, if seeded onto a collagen matrix containing embedded primary human corneal fibroblasts as feeder, provided the basic building blocks for reconstructing in vitro a 3D-multilayered corneal epithelium.  相似文献   

14.
Erythrocytic stages of the malaria parasite Plasmodium falciparum rely on glycolysis for their energy supply and it is unclear whether they obtain energy via mitochondrial respiration albeit enzymes of the tricarboxylic acid (TCA) cycle appear to be expressed in these parasite stages. Isocitrate dehydrogenase (ICDH) is either an integral part of the mitochondrial TCA cycle or is involved in providing NADPH for reductive reactions in the cell. The gene encoding P. falciparum ICDH was cloned and analysis of the deduced amino-acid sequence revealed that it possesses a putative mitochondrial targeting sequence. The protein is very similar to NADP+-dependent mitochondrial counterparts of higher eukaryotes but not Escherichia coli. Expression of full-length ICDH generated recombinant protein exclusively expressed in inclusion bodies but the removal of 27 N-terminal amino acids yielded appreciable amounts of soluble ICDH consistent with the prediction that these residues confer targeting of the native protein to the parasites' mitochondrion. Recombinant ICDH forms homodimers of 90 kDa and its activity is dependent on the bivalent metal ions Mg2+ or Mn2+ with apparent Km values of 13 micro m and 22 micro m, respectively. Plasmodium ICDH requires NADP+ as cofactor and no activity with NAD+ was detectable; the for NADP+ was found to be 90 micro m and that of d-isocitrate was determined to be 40 micro m. Incubation of P. falciparum under exogenous oxidative stress resulted in an up-regulation of ICDH mRNA and protein levels indicating that the enzyme is involved in mitochondrial redox control rather than energy metabolism of the parasites.  相似文献   

15.
Bovine corneal keratan sulfate proteoglycan (KSPG) contains two core proteins, 37 and 25 kDa, if fully deglycosylated, but 47 and 35 kDa, respectively, after endo-beta-galactosidase (Funderburgh, J. L., and Conrad, G. W. (1990) J. Biol Chem. 265, 8297-8303). Chicken corneal KSPG released a single core protein of 47 kDa after endo-beta-galactosidase, and of 35 and 36 kDa, if deglycosylated with N-glycanase or trifluoromethanesulfonic acid. Affinity purified rabbit antibodies against each KSPG recognized only the intact proteoglycan or its core proteins in immunoblots of unfractionated guanidine-HCl extracts of whole cornea after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Affinity purified antibody to a synthetic peptide duplicating the NH2-terminal sequence of the 37-kDa bovine core protein showed little reactivity with untreated corneal extract but reacted with the 47-kDa bovine protein in endo-beta-galactosidase-treated extracts. RNA was isolated from bovine and chick corneal stromas and used for in vitro translation. Antibody against bovine KSPG immunoprecipitated two proteins of 56-53 kDa and a protein of 41 kDa after translation of bovine RNA. Translation of chick RNA produced a double band of 38-39 kDa and a single band of 25 kDa precipitating with antibody against chicken KSPG. Homologous unlabeled KSPG competed for binding of antibodies to these translation products. These data suggest that in vertebrate corneas, the multiple KSPG core protein isoforms may arise as products of separate mRNAs, rather than from proteolytic processing of a large polypeptide precursor.  相似文献   

16.
While many of the diverse crystallins of the transparent lens of vertebrates are related or identical to metabolic enzymes, much less is known about the lens crystallins of invertebrates. Here we investigate the complex eye of scallops. Electron microscopic inspection revealed that the anterior, single layered corneal epithelium overlying the cellular lens contains a regular array of microvilli that we propose might contribute to its optical properties. The sole crystallin of the scallop eye lens was found to be homologous to Omega-crystallin, a minor crystallin in cephalopods related to aldehyde dehydrogenase (ALDH) class 1/2. Scallop Omega-crystallin (officially designated ALDH1A9) is 55-56% identical to its cephalopod homologues, while it is 67 and 64% identical to human ALDH 2 and 1, respectively, and 61% identical to retinaldehyde dehydrogenase/eta-crystallin of elephant shrews. Like other enzyme-crystallins, scallop Omega-crystallin appears to be present in low amounts in non-ocular tissues. Within the scallop eye, immunofluorescence tests indicated that Omega-crystallin expression is confined to the lens and cornea. Although it has conserved the critical residues required for activity in other ALDHs and appears by homology modeling to have a structure very similar to human ALDH2, scallop Omega-crystallin was enzymatically inactive with diverse substrates and did not bind NAD or NADP. In contrast to mammalian ALDH1 and -2 and other cephalopod Omega-crystallins, which are tetrameric proteins, scallop Omega-crystallin is a dimeric protein. Thus, ALDH is the most diverse lens enzyme-crystallin identified so far, having been used as a lens crystallin in at least two classes of molluscs as well as elephant shrews.  相似文献   

17.
Several enzymes are known to accumulate in the cornea in unusually high concentrations. Based on the analogy with lens crystallins, these enzymes are called corneal crystallins, which are diverse and species-specific. Examining crystallins in lens and cornea in multiple species provides great insight into their evolution. We report data on major proteins present in the crocodile cornea, an evolutionarily distant taxon. We demonstrate that tau-crystallin/alpha-enolase and triose phosphate isomerase (TIM) are among the major proteins expressed in the crocodile cornea as resolved by 2D gel electrophoresis and identified by MALDI-TOF. These proteins might be classified as putative corneal crystallins. tau-Crystallin, known to be present in turtle and crocodile lens, has earlier been identified in chicken and bovine cornea, whereas TIM has not been identified in the cornea of any species. Immunostaining showed that tau-crystallin and TIM are concentrated largely in the corneal epithelium. Using western blot, immunofluorescence and enzymatic activity, we demonstrate that high accumulation of tau-crystallin and TIM starts in the late embryonic development (after the 24th stage of embryonic development) with maximum expression in a two-week posthatched animal. The crocodile corneal extract exhibits significant alpha-enolase and TIM activities, which increases in the corneal extract with development. Our results establishing the presence of tau-crystallin in crocodile, in conjunction with similar reports for other species, suggest that it is a widely prevalent corneal crystallin. Identification of TIM in the crocodile cornea reported here adds to the growing list of corneal crystallins.  相似文献   

18.
We have previously shown that a basic 64-kilodalton (no. 3 in the catalog of Moll et al.) and an acidic 55-kilodalton (no. 12) keratin are characteristic of suprabasal cell layers in cultured rabbit corneal epithelial colonies, and therefore may be regarded as markers for an advanced stage of corneal epithelial differentiation. Moreover, using an AE5 mouse monoclonal antibody, we showed that the 64-kilodalton keratin marker is expressed suprabasally in limbal epithelium but uniformly (basal layer included) in central corneal epithelium, suggesting that corneal basal cells are in a more differentiated state than limbal basal cells. In conjunction with previous data implicating the centripetal migration of corneal epithelial cells, our data support a model of corneal epithelial maturation in which corneal epithelial stem cells are located in the limbus, the transitional zone between the cornea and conjunctiva. In the present study, we analyzed the expression of the 64-kilodalton keratin in developing human corneal epithelium by immunohistochemical staining. At 8 weeks of gestation, the presumptive corneal epithelium is composed of a single layer of cuboidal cells with an overlying periderm; neither of these cell layers is AE5 positive. At 12-13 weeks of gestation, some superficial cells of the three- to four-layered epithelium become AE5 positive, providing the earliest sign of overt corneal epithelial differentiation. At 36 weeks, although the epithelium is morphologically mature (four to six layers), AE5 produces a suprabasal staining pattern, this being in contrast to the adult epithelium which exhibits uniform staining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Using suppressive subtractive hybridization, we have identified a novel gene, which we named early epithelial differentiation associated (EEDA), which is uniquely associated with an early stage of stratified epithelial differentiation. In epidermis, esophageal epithelium, and tongue epithelium, EEDA mRNA, and antigen was abundant in suprabasal cells, but was barely detectable in more differentiated cells. Consistent with the limbal location of corneal epithelial stem cells, EEDA was expressed in basal corneal epithelial cells that are out of the stem cell compartment, as well as the suprabasal corneal epithelial cells. The strongest EEDA expression occurred in suprabasal precortical cells of mouse, bovine, and human anagen follicles. Developmental studies showed that the appearance of EEDA in embryonic mouse epidermis (E 15.5) coincided with morphological keratinization. Interestingly, EEDA expression is turned off when epithelia were perturbed by wounding and by cultivation under both low and high Ca2+ conditions. Our results indicate that EEDA is involved in the early stages of normal epithelial differentiation, and that EEDA is important for the "normal" differentiation pathway in a wide range of stratified epithelia.  相似文献   

20.
To investigate a role of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, in corneal epithelial wound healing, we analyzed the expression of TSP-1 in the normal and wounded mouse corneal epithelia and the effect of exogenous TSP-1 on the wound healing. In immunohistochemical analyses of unwounded corneas, TSP-1 was only detectable in endothelial cells. In contrast, TSP-1 appeared on the wounded corneal surface and on the corneal stroma, at 30 min and 8-16 h, respectively, after making an abrasion on the corneal epithelium. This expression of TSP-1 disappeared after 36-48 h, when re-epithelialization was completed. The TSP-1 mRNA level in the wounded corneas increased as much as three fold compared with that in the unwounded corneas. In organ culture, exogenous TSP-1 stimulated the re-epithelialization of corneal epithelial wounds whereas anti-TSP-1 antibody significantly inhibited the re-epithelialization. These findings suggest the possibility that epithelial defects in the corneas stimulate the expression of TSP-1 in the wound area, resulting in the accelerated re-epithelialization of the cornea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号