首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse leukotriene B4 receptor (m-BLTR) gene was cloned. Membrane fractions of human embryonic kidney 293 cells stably expressing m-BLTR demonstrated a high affinity and specific binding for leukotriene B4 (LTB4, Kd = 0.24 +/- 0.03 nM). In competition binding experiments, LTB4 was the most potent competitor (Ki = 0.23 +/- 0.05 nM) followed by 20-hydroxy-LTB4 (Ki = 1.1 +/- 0.2 nM) and by 6-trans-12-epi-LTB4 and LTD4 (Ki > 1 microM). In stably transfected Chinese hamster ovary cells, LTB4 inhibited forskolin-activated cAMP production and induced an increase of intracellular calcium, suggesting that this receptor is coupled to Gi- and Go-like proteins. In Xenopus laevis melanophores transiently expressing m-BLTR, LTB4 induced the aggregation of pigment granules, confirming the inhibition of cAMP production induced by LTB4. BLT receptors share significant sequence homology with chemokine receptors (CCR5 and CXCR4) that act as human immunodeficiency virus (HIV) coreceptors. However, among the 16 HIV/SIV strains tested, the human BLT receptor did not act as a coreceptor for virus entry into CD4-expressing cells based on infection and cell-cell fusion assays. In 5-lipoxygenase-deficient mice, the absence of leukotriene B4 biosynthesis did not detectably alter m-BLT receptor binding in membranes obtained from glycogen-elicited neutrophils. Isolation of the m-BLTR gene will form the basis of future experiments to elucidate the selective role of LTB4, as opposed to cysteinyl-leukotrienes, in murine models of inflammation.  相似文献   

2.
Leukotriene B(4), an arachidonate metabolite, is a potent chemoattractant of leukocytes involved in various inflammatory diseases. Two G-protein-coupled receptors for leukotriene B(4) have been cloned and characterized. BLT1 (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624) is a high affinity receptor exclusively expressed in leukocytes, and BLT2 (Yokomizo, T., Kato, K., Terawaki, K., Izumi, T., and Shimizu, T. (2000) J. Exp. Med. 192, 421-432) is a low affinity receptor expressed more ubiquitously. Here we report the binding profiles of various BLT antagonists and eicosanoids to either BLT1 or BLT2 using the membrane fractions of Chinese hamster ovary cells stably expressing the receptor. BLT antagonists are grouped into three classes: BLT1-specific U-75302, BLT2-specific LY255283, and BLT1/BLT2 dual-specific ZK 158252 and CP 195543. We also show that 12(S)-hydroxyeicosatetraenoic acid, 12(S)-hydroperxyeicosatetraenoic acid, and 15(S)-hydroxyeicosatetraenoic acid competed with [(3)H]LTB(4) binding to BLT2, but not BLT1, dose dependently. These eicosanoids also cause calcium mobilization and chemotaxis through BLT2, again in contrast to BLT1. These findings suggest that BLT2 functions as a low affinity receptor, with broader ligand specificity for various eicosanoids, and mediates distinct biological and pathophysiological roles from BLT1.  相似文献   

3.
Wei JD  Kim JY  Kim JH 《FEBS letters》2011,585(22):3501-3506
BLT2, a low-affinity leukotriene B(4) (LTB(4)) receptor, is a member of the G protein-coupled receptor family and is involved in multiple cellular responses, including chemotaxis. Despite its biological significance, the mechanisms of BLT2 regulation, especially by protein kinases, are poorly characterised. In this study, we found that Akt phosphorylates BLT2 at its C-terminal Thr(355) residue and that this event is critical for BLT2-mediated chemotactic responses. In addition, we found that Rac1 stimulation and subsequent reactive oxygen species (ROS) production lie downstream of BLT2 phosphorylation, thus mediating chemotaxis.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) initiate pathways leading to agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. However, the role of GRKs in modulation of signaling properties of native receptors has not been clearly defined. Here we addressed this question by generating Chinese hamster ovary (CHO) cells stably expressing a dominant-negative mutant of GRK2 (DN-GRK2), K220R, using retrovirally mediated gene transfer, and we assessed function of the endogenously expressed calcitonin (CT) receptors. We found that CT-mediated responses were prominently enhanced in CHO cells expressing DN-GRK2 compared with mock-infected control CHO cells with approximately 3-fold increases in CT-promoted cAMP production in whole cells and adenylyl cyclase activity in membrane fractions. CT-promoted phosphoinositide hydrolysis was also enhanced in DN-GRK2 cells. The number of CT receptors was increased approximately 3-fold in DN-GRK2 cells, as assessed by (125)I-salmon CT-specific binding, and this was associated with increased CT receptor mRNA levels. These results indicate that DN-GRK2 has multiple consequences for CT receptor signaling, but a primary effect is an increase in CT receptor mRNA and receptor number and, in turn, enhanced CT receptor signaling. As such, our findings provide a mechanistic basis for previous observations regarding agonist-promoted down-regulation of CT receptors and for resistance and escape from response to CT in vitro and in vivo. Moreover, the data suggest that blunting of receptor desensitization by DN-GRK2 blocks a GRK-mediated tonic inhibition of CT receptor expression and response. We speculate that GRKs play a similar role for other G protein-coupled receptors as well.  相似文献   

5.
6.
BLT1 and BLT2: the leukotriene B(4) receptors   总被引:7,自引:0,他引:7  
Two receptors for leukotriene B(4) (LTB(4)) have been molecularly identified: BLT1 and BLT2. Both receptors are G protein-coupled seven transmembrane domain receptors, whose genes are located in very close proximity to each other in the human and mouse genomes. The two receptors differ in their affinity and specificity for LTB(4): BLT1 is a high-affinity receptor specific for LTB(4), whereas BLT2 is a low-affinity receptor that also binds other eicosanoids. The two receptors also differ in their pattern of expression with BLT1 being expressed primarily in leukocytes, whereas BLT2 is expressed more ubiquitously. By mediating the activities of LTB(4), these receptors participate both in host immune responses and in the pathogenesis of inflammatory diseases. Reduced disease severity in animal inflammatory models seen with LTB(4) receptor antagonists and in mice with targeted deletion of BLT1 have revealed important roles for LTB(4) and its receptors in regulating pathologic inflammation.  相似文献   

7.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. LPA has been widely considered to elicit its biological functions through three types of G protein-coupled receptors, Edg-2 (endothelial cell differentiation gene-2)/LPA1/vzg-1 (ventricular zone gene-1), Edg-4/LPA2, and Edg-7/LPA3. We identified an orphan G protein-coupled receptor, p2y9/GPR23, as the fourth LPA receptor (LPA4). Membrane fractions of RH7777 cells transiently expressing p2y9/GPR23 displayed a specific binding for 1-oleoyl-LPA with a Kd value of around 45 nm. Competition binding and reporter gene assays showed that p2y9/GPR23 preferred structural analogs of LPA with a rank order of 1-oleoyl- > 1-stearoyl- > 1-palmitoyl- > 1-myristoyl- > 1-alkyl- > 1-alkenyl-LPA. In Chinese hamster ovary cells expressing p2y9/GPR23, 1-oleoyl-LPA induced an increase in intracellular Ca2+ concentration and stimulated adenylyl cyclase activity. Quantitative real-time PCR demonstrated that mRNA of p2y9/GPR23 was significantly abundant in ovary compared with other tissues. Interestingly, p2y9/GPR23 shares only 20-24% amino acid identities with Edg-2/LPA1, Edg-4/LPA2, and Edg-7/LPA3, and phylogenetic analysis also shows that p2y9/GPR23 is far distant from the Edg family. These facts suggest that p2y9/GPR23 has evolved from different ancestor sequences from the Edg family.  相似文献   

8.
To investigate the coupling selectivity of G proteins and G protein-coupled receptors (GPCRs), we developed a reconstitution system made up of GPCR and heterotrimeric G proteins on extracellular baculovirus particles (budded virus (BV)). BV released from Sf9 cells infected with a recombinant baculovirus coding for human leukotriene B4 receptor (BLT1) cDNA exhibited a high level of BLT1 expression (27.3 pmol/mg of protein) and specific [3H]leukotriene B4 binding activity (Kd = 3.67 nm). The apparent low affinity of the expressed BLT1 is thought to be due to relative non-availability of the Galphai isoform, which couples to BLT1, in BV. Co-infection of heterotrimeric G protein recombinant viruses led to co-expression of BLT1 and G protein subunits on BV. A guanosine-5'-(beta,gamma-imido)triphosphate-sensitive, high affinity ligand binding was observed in the BLT1 BV co-expressing Galphai1beta1gamma2 (Kd = 0.17 nm). A relatively large amount of high affinity receptor protein was recovered in the co-expressing BV fraction (6.81 pmol/mg of protein). A combination of BLT1 and Galphai1 without Gbeta1gamma2 did not exhibit high affinity ligand binding on BV, indicating the low background environment for the GPCR-G protein coupling in this BV reconstitution system. To test other G proteins for coupling, various Galpha subunits were combinatorially expressed in BV with BLT1 and Gbeta1gamma2. The BLT1 BV co-expressing GalphaoAbeta1gamma2 exhibited a comparably high affinity ligand binding as well as ligand-stimulated guanosine 5'-3-O-(thio)triphosphate binding to Galphai1beta1gamma2. Co-expression of other Galpha isoforms such as Galphas, Galpha11, Galpha14, Galpha16, Galpha12, or Galpha13 did not exhibit any significant effects on ligand binding affinity in this system. These results reveal that BLT1 and coupled trimeric G proteins were functionally reconstituted on BV and that Galphao as well as Galphai couples to BLT1. This expression system should prove highly useful for pharmacological characterization, biosensor chip applications, and also drug discovery directed at highly important targets of the membrane receptor proteins.  相似文献   

9.
Desensitization of G-protein-coupled receptors may involve phosphorylation of serine and threonine residues. The leukotriene B(4) (LTB(4)) receptor (BLT1) contains 14 intracellular serines and threonines, 8 of which are part of consensus target sequences for protein kinase C (PKC) or casein kinase 2. In this study, we investigated the importance of PKC and GPCR-specific kinase (GRK) phosphorylation in BLT1 desensitization. Pretreatment of BLT1-transfected COS-7 cells with PKC activators caused a decrease of LTB(4)-induced inositol phosphate (IP) accumulation. This reduction was prevented with the PKC inhibitor, staurosporine, and not observed in cells expressing a BLT1 deletion mutant (G291stop) lacking the cytoplasmic tail. Moreover LTB(4)-induced IP accumulation was significantly inhibited by overexpression of GRK2, GRK5, and especially GRK6, in cells expressing wild type BLT1 but not in those expressing G291stop. GRK6-mediated desensitization correlated with increased phosphorylation of BLT1. The G319stop truncated BLT1 mutant displayed functional characteristics comparable with wild type BLT1 in terms of desensitization by GRK6, but not by PKC. Substitution of Thr(308) within a putative casein kinase 2 site to proline or alanine in the full-length BLT1 receptor prevented most of GRK6-mediated inhibition of LTB(4)-induced IP production but only partially affected LTB(4)-induced BLT1 phosphorylation. Our findings thus suggest that Thr(308) is a major residue involved in GRK6-mediated desensitization of BLT1 signaling.  相似文献   

10.
There is compelling evidence that G protein-coupled receptors exist as homo- and heterodimers, but the way these assemblies function at the molecular level remains unclear. We used here the purified leukotriene B(4) receptor BLT1 stabilized in its dimeric state to analyze how a receptor dimer activates G proteins. For this, we produced heterodimers between the wild-type BLT1 and a BLT1/ALXR chimera. The latter is no longer activated by leukotriene B(4) but is still activated by ALXR agonists. In this heterodimer, agonist binding to either one of the two protomers induced asymmetric conformational changes within the receptor dimer. Of importance, no G protein activation was observed when using a dimer where the ligand-loaded protomer was not able to trigger GDP/GTP exchange due to specific mutations in its third intracellular loop, establishing that the conformation of the agonist-free protomer is not competent for G protein activation. Taken together, these data indicate that although ligand binding to one protomer in the heterodimer is associated with cross-conformational changes, a trans-activation mechanism where the ligand-free subunit would trigger GDP/GTP exchange cannot be considered in this case for G protein activation. This observation sheds light into the way GPCR dimers, in particular heterodimers, could activate their cognate G proteins.  相似文献   

11.
12.
Many G-protein-coupled receptors can activate more than one G-protein subfamily member. Leukotriene B4 receptor type 1 (BLT1) is a high affinity G-protein-coupled receptors for leukotriene B4 functioning in host defense, inflammation, and immunity. Previous studies have shown that BLT1 utilizes different G-proteins (the Gi family and G16 G-proteins) in mediating diverse cellular events and that truncation of the cytoplasmic tail of BLT1 does not impair activation of Gi and G16 proteins. To determine responsive regions of BLT1 for G-protein coupling, we performed an extensive mutagenesis study of its intracellular loops. Three intracellular loops (i1, i2, and i3) of BLT1 were found to be important for both Gi and G16 coupling, as judged by Gi-dependent guanosine 5'-(gamma-thio) triphosphate (GTPgammaS) binding and G16-dependent inositol phosphate accumulation assays. The i3-1 mutant, with a mutation at the i3 amino terminus, exhibited greatly reduced GTPgammaS binding but intact inositol phosphate accumulation triggered by leukotriene B4 stimulation. These results suggest that the i3-1 region is required only for Gi activation. Moreover, in the i3-1 mutant, the deficiency in Gi activation was accompanied by a loss of the high affinity leukotriene B4 binding state seen with the wild type receptor. A three-dimensional model of BLT1 constructed based on the structure of bovine rhodopsin suggests that the i3-1 region may consist of the cytoplasmic end of the transmembrane helix V, which protrudes the helix into the cytoplasm. From mutational studies and three-dimensional modeling, we propose that the extended cytoplasmic helix connected to the transmembrane helix V of BLT1 might be a key region for selective activation of Gi proteins.  相似文献   

13.
Leukotriene B(4) mediates diverse inflammatory diseases through the G protein-coupled receptors BLT1 and BLT2. In this study, we developed mice deficient in BLT1 and BLT2 by simultaneous targeted disruption of these genes. The BLT1/BLT2 double-deficient mice developed normally and peritoneal exudate cells showed no detectable responses to leukotriene B(4) confirming the deletion of the BLT1/BLT2 locus. In a model of collagen-induced arthritis on the C57BL/6 background, the BLT1/BLT2(-/-) as well as the previously described BLT1(-/-) animals showed complete protection from disease development. The disease severity correlated well with histopathology, including loss of joint architecture, inflammatory cell infiltration, fibrosis, pannus formation, and bone erosion in joints of BLT1/BLT2(+/+) animals and a total absence of disease pathology in leukotriene receptor-deficient mice. Despite these differences, all immunized BLT1(-/-) and BLT1/BLT2(-/-) animals had similar serum levels of anti-collagen Abs relative to BLT1/BLT2(+/+) animals. Thus, BLT1 may be a useful target for therapies directed at treating inflammation associated with arthritis.  相似文献   

14.
Directed migration of polymorphonuclear neutrophils (PMN) is required for adequate host defense against invading organisms and leukotriene B(4) (LTB(4)) is one of the most potent PMN chemoattractants. LTB(4) exerts its action via binding to BLT1, a G protein-coupled receptor. G protein-coupled receptors are phosphorylated by G protein-coupled receptor kinases (GRK) in an agonist-dependent manner, resulting in receptor desensitization. Recently, it has been shown that the human BLT1 is a substrate for GRK6. To investigate the physiological importance of GRK6 for inflammation and LTB(4) signaling in PMN, we used GRK6-deficient mice. The acute inflammatory response (ear swelling and influx of PMN into the ear) after topical application of arachidonic acid was significantly increased in GRK6(-/-) mice. In vitro, GRK6(-/-) PMN showed increased chemokinetic and chemotactic responses to LTB(4). GRK6(-/-) PMN respond to LTB(4) with a prolonged increase in intracellular calcium and prolonged actin polymerization, suggesting impaired LTB(4) receptor desensitization in the absence of GRK6. However, pre-exposure to LTB(4) renders both GRK6(-/-) as well as wild-type PMN refractory to restimulation with LTB(4), indicating that the presence of GRK6 is not required for this process to occur. In conclusion, GRK6 deficiency leads to prolonged BLT1 signaling and increased neutrophil migration.  相似文献   

15.
The Drosophila Genome Project website (www.flybase.org) contains an annotated gene sequence (CG5911), coding for a G protein-coupled receptor. We cloned the cDNA corresponding to this sequence and found that the gene has not been correctly predicted. The corrected gene CG5911 has five introns and six exons (1-6). Alternative splicing yields two cDNAs called A (containing exons 1-5) and B (containing exons 1-4, 6). We expressed these splicing variants in Chinese hamster ovary cells and found that the corrected CG5911-A and -B cDNAs coded for two different G protein-coupled receptors that could be activated by low concentrations of Drosophila ecdysis triggering hormones-1 and -2. Ecdysis (cuticle shedding) is an important behaviour, allowing growth and metamorphosis in insects and other arthropods. Our paper is the first report on the molecular identification of ecdysis triggering hormone receptors from insects.  相似文献   

16.
17.
A novel receptor cDNA was isolated from a human hippocampal cDNA library. The encoded polypeptide contains structural features consistent with its classification as a G protein-coupled receptor and shares 45% homology with the human A1 and A2a adenosine receptors. Chinese hamster ovary K1 cells expressing this receptor showed marked stimulation of adenylate cyclase when treated with 1mM adenosine. There was no response to ligands selective for A1 and A2a receptors but the general adenosine agonist N-ethylcarboxyamidoadenosine (NECA) caused a 10 fold increase in cyclic AMP accumulation with an EC50 of approximately 0.9 microM. This effect was inhibited by the adenosine receptor antagonist theophylline. Specific binding of A1 and A2a selective agonists and NECA was not detected. It is proposed that the novel receptor is a human brain adenosine A2b receptor subtype.  相似文献   

18.
19.
The Drosophila Genome Project website contains an annotated gene (CG14575) for a G protein-coupled receptor. We cloned this receptor and found that the cloned cDNA did not correspond to the annotated gene; it partly contained different exons and additional exons located at the 5(')-end of the annotated gene. We expressed the coding part of the cloned cDNA in Chinese hamster ovary cells and found that the receptor was activated by two neuropeptides, capa-1 and -2, encoded by the Drosophila capability gene. Database searches led to the identification of a similar receptor in the genome from the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification of this first insect capa receptor will advance our knowledge on insect renal function.  相似文献   

20.
Angiotensin II (Ang II) binds to specific G protein-coupled receptors and is mitogenic in Chinese hamster ovary (CHO) cells stably expressing a rat vascular angiotensin II type 1A receptor (CHO-AT(1A)). Cyclin D1 protein expression is regulated by mitogens, and its assembly with the cyclin-dependent kinases induces phosphorylation of the retinoblastoma protein pRb, a critical step in G(1) to S phase cell cycle progression contributing to the proliferative responses. In the present study, we found that in CHO-AT(1A) cells, Ang II induced a rapid and reversible tyrosine phosphorylation of various intracellular proteins including the protein-tyrosine phosphatase SHP-2. Ang II also induced cyclin D1 protein expression in a phosphatidylinositol 3-kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)-dependent manner. Using a pharmacological and a co-transfection approach, we found that p21(ras), Raf-1, phosphatidylinositol 3-kinase and also the catalytic activity of SHP-2 and its Src homology 2 domains are required for cyclin D1 promoter/reporter gene activation by Ang II through the regulation of MAPK/ERK activity. Our findings suggest for the first time that SHP-2 could play an important role in the regulation of a gene involved in the control of cell cycle progression resulting from stimulation of a G protein-coupled receptor independently of epidermal growth factor receptor transactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号