首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The myosin molecule was extracted from the smooth muscle parts of horse esophagus and purified by ammonium sulfate fractionation. The schlieren pattern of the sedimentation velocity run showed a very sharp single peak of.5.9. S (s20,w). Molecular weight of the protein was measured by means of the Archibald and sedimentation equilibrium methods, both in 0.5M KCI buffered by 1/150 M phosphate at pH 7.5 and at 5°C. The values obtained were 6.25 × 105 and 5.81 × 105respectively, for the two methods. The second virial coefficients were 1.1 × 104 and 1.2 × 10?4 ml/g. Denatured smooth muscle myosin was prepared in a solution of 5M guanidine HC1 containing 0.4 M KC1 and 0.2 M β-mercaptoet hanol buffered at pH 8.0. The weight-average molecular weight of the denatured smooth muscle myosin was 2.24 × 105 and the second virial coefficient was 7.6 × 10?4 ml/g. The values described above are in good agreement with those reported for rabbit skeletal myosin with ammonium sulfate fractionation. The molecular dimension of the molecule is estimated as the value for an axial ratio of 100, assuming a rigid rod molecular model for this molecule, both the thermodynamical and hydrodynamical treatment being in a good agreement with this estimation.  相似文献   

2.
Myosin was prepared from arterial smooth muscle, and a hybrid actomyosin was formed from arterial myosin and rabbit skeletal muscle F-actin. We performed kinetics on the ATPase reaction [EC 3.6.1.3] of arterial myosin and the hybrid actomyosin at high ionic strength, and compared the kinetic properties of arterial myosin ATPase with those of skeletal muscle myosin ATPase. No significant difference was found between these two myosins in the size of the initial Pi burst, the amount of bound nucleotides, and the rates of various elementary steps in the ATPase reaction. On the other hand, two important differences were observed between the hybrid actomyosin and skeletal muscle actomyosin: (i) The amounts of ATP necessary for complete dissociation of the hybrid and skeletal muscle actomyosins were 2 and 1 mol/mol of myosin, respectively. (ii) The rate of dissociation of the hybrid actomyosin induced by ATP was much lower than that of skeletal muscle actomyosin and also was lower than that of fluorescence enhancement.  相似文献   

3.
4.
Heavy meromyosin subfragment-1 from human platelets and chicken gizzard exhibited an identical chromatographic pattern on agarose-ATP columns both in the absence and in the presence of Ca2+ and Mg2+. In the presence of Ca2+, the behavior differed from that of rabbit white skeletal muscle subfragment-1. The reaction of lysyl residues of platelet myosin with 2,4,6-trinitrobenzene sulfonate did not affect the K+- or Mg2+-stimulated ATPase activity. A similar behavior was exhibited by chicken gizzard myosin whereas trinitrophenylation of the more active lysyl residues in skeletal muscle myosin caused a marked increase in Mg2+-stimulated and a decrease in K+-stimulated ATPase activity. These features may point to a similar location of the essential lysyl residue in platelet and smooth muscle myosin, which is different from that of skeletal muscle. Alkylation of thiol groups by N-ethyl maleimide in the absence of added nucleotides resulted in a loss of K+-ATPase and in an increase in the Ca2+-ATPase in all three myosins, the increase for the skeletal myosin being much greater than for the platelet and chicken gizzard preparations. Alkylation of myosin in the presence of MgADP led to a decrease in K+-ATPase of all preparations whereas the Ca2+-ATPase as a function of time exhibited a maximum for the platelet and skeletal muscle proteins. These features may point to a certain similarity with respect to the active site of platelet and smooth muscle myosins and a difference between these and skeletal muscle myosin.  相似文献   

5.
Several techniques were used to investigate the possibility that smooth muscle tropomyosin interacts with smooth muscle myosin. These experiments were carried out in the absence of actin. The Mg2+-ATPase activity of myosin was activated by tropomyosin. This was most marked at low ionic strength but also occurred at higher ionic strength with monomeric myosin. For myosin and HMM, the activation of Mg2+-ATPase by tropomyosin was greater at low levels of phosphorylation. There was no detectable effect of tropomyosin on the Mg2+-ATPase activity of S1. The KCl dependence of myosin viscosity was influenced by tropomyosin, and in the presence of tropomyosin, the 6S to 10S transition occurred at lower KCl concentrations. From the viscosity change, an approximate stoichiometry of 1:1 tropomyosin to myosin was estimated. The phosphorylation dependence of viscosity, which reflects the 10S-6S transition, also was altered in the presence of tropomyosin. An interaction between myosin and tropomyosin was detected by fluorescence measurements using tropomyosin labeled with dansyl chloride. These results indicate that an interaction occurs between myosin and tropomyosin. In general, the interaction is favored at low ionic strength and at low levels of phosphorylation. This interaction is not expected to be competitive with the formation of the actin-tropomyosin complex, but the possibility is raised that a direct interaction between myosin and tropomyosin bound to the thin filament could modify contractile properties in smooth muscle.  相似文献   

6.
7.
Gizzard smooth muscle myosin, the 20,000 Mr light chain (L20) of which had been phosphorylated in vitro with a calmodulin-myosin light chain kinase system, was separated into 5 isolated bands in a pyrophosphate polyacrylamide gel. Their mobilities were in the following order: myosin with 2 unphosphorylated L20 (GM) less than myosin with 1 unphosphorylated and 1 mono-phosphorylated L20 (GMP1) less than myosin with 2 mono-phosphorylated L20 (GMP2) less than myosin with 1 mono-phosphorylated and 1 di-phosphorylated L20 (GMP3) less than myosin with 2 di-phosphorylated L20 (GMP4). We used this pyrophosphate polyacrylamide gel electrophoresis to analyze the phosphorylated state of taenia coli smooth muscle during K+-induced contraction. During the initial 2 min contraction, phosphorylated forms corresponding to GMP1 and GMP2 were detected in addition to the unphosphorylated form.  相似文献   

8.
Smooth muscle myosin light chain kinase (MLCK) is known to bind to thin filaments and myosin filaments. Telokin, an independently expressed protein with an identical amino acid sequence to that of the C-terminal domain of MLCK, has been shown to bind to unphosphorylated smooth muscle myosin. Thus, the functional significance of the C-terminal domain and the molecular morphology of MLCK were examined in detail. The C-terminal domain was removed from MLCK by alpha-chymotryptic digestion, and the activity of the digested MLCK was measured using myosin or the isolated 20-kDa light chain (LC20) as a substrate. The results showed that the digestion increased K(m) for myosin 3-fold whereas it did not change the value for LC20. In addition, telokin inhibited the phosphorylation of myosin by MLCK by increasing K(m) but only slightly increased K(m) for LC20. Electron microscopy indicated that MLCK was an elongated molecule but was flexible so as to form folded conformations. MLCK was crosslinked to unphosphorylated heavy meromyosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the absence of Ca(2+)/calmodulin (CaM), and electron microscopic observation of the products revealed that the MLCK molecule bound to the head-tail junction of heavy meromyosin. These results suggest that MLCK binds to the head-tail junction of unphosphorylated myosin through its C-terminal domain, where LC20 can be promptly phosphorylated through its catalytic domain following the Ca(2+)/CaM-dependent activation.  相似文献   

9.
Fast muscle myosin responds in similar way to F-actin and to phalloidin F-actin. It is activated 7.5 fold at infinite F-actin concentration and 6.8 fold at infinite phalloidin F-actin. The actomyosin dissociation constants are 0.89±0.34 μM with F-actin and 0.90±0.71 μM with phalloidin F-actin. Slow muscle myosin responds differently to F-actin and to phalloidin F-actin. It is activated 3.76 fold at infinite F-actin concentration and only 2.27 fold at infinite phalloidin F-actin concentration. The actomyosin dissociation constants are 1.95±1.27 μM with F-actin and 0.27±0.16 μM with phalloidin F-actin. At first glance this means that substitution of F-actin with phalloidin F-actin magnifies the difference between fast muscle and slow muscle myosins. Furthermore the change of the dissociation constants may affect the contractile force of the attached crossbridge.  相似文献   

10.
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot–labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto–myosin and MLCK–myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting “stuck” on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.  相似文献   

11.
12.
Fast and slow mammalian muscle myosins differ in the heavy chain sequences (MHC-2, MHC-1) and muscles expressing the two isoforms contract at markedly different velocities. One role of slow skeletal muscles is to maintain posture with low ATP turnover, and MHC-1 expressed in these muscles is identical to heavy chain of the beta-myosin of cardiac muscle. Few studies have addressed the biochemical kinetic properties of the slow MHC-1 isoform. We report here a detailed analysis of the MHC-1 isoform of the rabbit compared with MHC-2 and focus on the mechanism of ADP release. We show that MHC-1, like some non-muscle myosins, shows a biphasic dissociation of actin-myosin by ATP. Most of the actin-myosin dissociates at up to approximately 1000 s(-1), a very similar rate constant to MHC-2, but 10-15% of the complex must go through a slow isomerization (approximately 20 s(-1)) before ATP can dissociate it. Similar slow isomerizations were seen in the displacement of ADP from actin-myosin.ADP and provide evidence of three closely related actin-myosin.ADP complexes, a complex in rapid equilibrium with free ADP, a complex from which ADP is released at the rate required to define the maximum shortening velocity of slow muscle fibers (approximately 20 s(-1)), and a third complex that releases ADP too slowly (approximately 6 s(-1)) to be on the main ATPase pathway. The role of these actin-myosin.ADP complexes in the mechanochemistry of slow muscle contraction is discussed in relation to the load dependence of ADP release.  相似文献   

13.
A monoclonal antibody, 2B6, has been prepared against the embryonic myosin heavy chain of rat skeletal muscle. On solid phase radioimmunoassay, 2B6 shows specificity to myosin isozymes known to contain the embryonic myosin heavy chain and on immunoblots of denatured contractile proteins and on competitive radioimmunoassay, it reacts only with the myosin heavy chain of embryonic myosin and not with the myosin heavy chain of neonatal or adult fast and slow myosin isozymes or with other contractile or noncontractile proteins. This specificity is maintained with cat, dog, guinea pig, and human myosins, but not with chicken myosins. 2B6 was used to define which isozymes in the developing animal contained the embryonic myosin heavy chain and to characterize the changes in embryonic myosin heavy chain in fast versus slow muscles during development. Finally, 2B6 was used to demonstrate that thyroid hormone hastens the disappearance of embryonic myosin heavy chain during development, while hypothyroidism retards its decrease. This confirmed our previous conclusion that thyroid hormones orchestrate changes in isozymes during development.  相似文献   

14.
A model for a main element of the active site of skeletal muscle myosin is presented that relates directly to the 92 amino acid fragment (p10) of myosin recently described by Elzinga &; Collins (1977). In this model, the substrate, an eight-membered cyclic complex of MgATP, fits tightly into a 16 amino acid segment of p10 and interacts with seven of its amino acids. A main feature of the model is the important role played by the one molecule of Nτ-methylhistidine2 that is present in each myosin heavy chain. At the site, it is postulated that this rare amino acid functions as a donor ligand to Mg2+. Once Nτ-methylhistidine is put in place next to the metal, the other amino acids that appear to form a pocket come easily into position around the MgATP. These amino acids with their postulated functions are: tyrosine 72, which through a Mg-bound water, or perhaps directly, is attached to the Mg; histidine 76, which donates a proton to the Pγ of ATP; lysine 78, which binds electrostatically to Pβ of ATP; phenylalanines 80 and 81, which flank the purine ring of ATP; and aspartate 66, which forms a hydrogen bond to the 6-amino group of adenine. The Mg-coordination role ascribed to Nτ-methylhistidine 69 in skeletal muscle myosin could be taken by histidine 69 in cardiac myosin and in other muscle myosins that do not contain the methylated amino acid.The choice of p10 to contain a main element of the active site is based on: (a) the presence in p10 of the essential sulfhydryl groups, SH1 and SH2, whose modification affects the ATPase activity of myosin; (b) the presence in ρ10 of Nτ-methylhistidine, an unusual amino acid whose methylation in skeletal muscle we take as an indicator for a special function at the active site; (c) the position of p10 in the primary structure near the junction between subfragment 1 and subfragment 2 (the hinge region) where, we postulate, enzymatic events at the active site are coupled to movements of the hinge that occur during contraction; (d) indications that the DTNB light chain, probably involved in regulation, is also near the hinge; (e) the effects of MgATP at the active site on the chemical reactivity of three SH groups (SH1, SH2 and SH3) located near the hinge; and (f) the effect of hinge cleavage on the oxygen exchange reaction catalyzed at the active site. The correlation of all these observations forms the basis for our placement of part of the active site on p10 near the subfragment 1-subfragment 2 hinge.  相似文献   

15.
Skeletal muscle fiber types classified on the basis of their content of different myosin heavy chain (MHC) isoforms were analyzed in samples from hindlimb muscles of adult sedentary llamas (Lama glama) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry, and quantitative histochemistry of fiber metabolic and size properties. The immunohistochemical technique allowed the separation of four pure (i.e., expressing a unique MHC isoform) muscle fiber types: one slow-twitch (Type I) and three fast-twitch (Type II) phenotypes. The same four major fiber types could be objectively discriminated with two serial sections stained for mATPase after acid (pH 4.5) and alkaline (pH 10.5) preincubations. The three fast-twitch fiber types were tentatively designated as IIA, IIX, and IIB on the basis of the homologies of their immunoreactivities, acid denaturation of their mATPase activity, size, and metabolic properties expressed at the cellular level with the corresponding isoforms of rat and horse muscles. Acid stability of their mATPase activity increased in the rank order IIA>IIX>IIB. The same was true for size and glycolytic capacity, whereas oxidative capacity decreased in the same rank order IIA>IIX>IIB. In addition to these four pure fibers (I, IIA, IIX, and IIB), four other fiber types with hybrid phenotypes containing two (I+IIA, IIAX, and IIXB) or three (IIAXB) MHCs were immunohistochemically delineated. These frequent phenotypes (40% of the semitendinosus muscle fiber composition) had overlapped mATPase staining intensities with their corresponding pure fiber types, so they could not be delineated by mATPase histochemistry. Expression of the three fast adult MHC isoforms was spatially regulated around islets of Type I fibers, with concentric circles of fibers expressing MHC-IIA, then MHC-IIX, and peripherally MHC-IIB. This study demonstrates that three adult fast Type II MHC isoproteins are expressed in skeletal muscle fibers of the llama. The general assumption that the very fast MHC-IIB isoform is expressed only in small mammals can be rejected.  相似文献   

16.
The ATPase activity of acto-myosin subfragment 1 (S-1) was measured in the presence of smooth and skeletal muscle tropomyosins over a wide range of ionic strengths (20-120 mM). In contrast to the 60% inhibitory effect caused by skeletal muscle tropomyosin at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on ionic strength. At low ionic strength (20 mM), smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM), it potentiates the ATPase activity 3-fold. All of these ATPase activities were measured at very low ratios of S-1 to actin, under conditions at which a 4-fold increase in S-1 concentration did not change the specific activity of the tropomyosin-acto.S-1 ATPase. Therefore, the potentiation of the ATPase activity by smooth muscle tropomyosin at high ionic strength cannot be explained by bound S-1 heads cooperatively turning on the tropomyosin-actin complex. To determine whether the fully potentiated rates are different in the presence of smooth muscle and skeletal muscle tropomyosins, S-1 which was extensively modified by N-ethylmaleimide was added to the ATPase assay to attain high ratios of S-1 to actin. The results showed that, under all conditions, the fully potentiated rates are the same for both tropomyosins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Structural and functional changes in myosin of fast muscles during early post-natal development were studied to seek correlations with well-known physiological changes in the contraction rate. The findings were as follows: 1. It is known that fetal fast muscle myosin contains three kinds of light chains. It was confirmed that their molecular weights were the same as those of adult fast muscle myosin, but different from those of adult slow muscle myosin. The amount of the smallest light chain, g3, was confirmed to increase markedly during the postnatal period. 2.The ATPase [EC3.6.1.3] activity of fetal fast muscle myosin (-1 day) was found to be about 50% of that of adult myosin. The pH-activity curve of fetal myosin ATPase was confirmed to be similar to that of adult myosin. 3. The rate of formation of the reactive myosin-phosphate-ADP complex, MADPP, was found not to change during post-natal development. 4. It was found that the rate of decomposition of MADPP in the presence of F-actin increased markedly during the post-natal period, and that the rate of decomposition of the complex of fetal mysoin was only 1/6 to 1/4 of that of adult myosin. The change in the actomyosin ATPase activity was found to be closely correlated with the increase in the g3 content during development.  相似文献   

19.
Both turkey (TPL) and chicken (CPL) pancreatic lipases possess only one exposed sulfhydryl residue (Cystein114). After preincubation with the lipase, the sulfhydryl reagent C12 -TNB was found to be a powerful inhibitor of TPL whereas it had no effect on the CPL activity. Based on the 3D structure modelling and the molecular dynamics, the bulky dodecyl chain might hamper the lid movement of the TPL leading to the lipase inhibition upon reaction with C12 -TNB. Meanwhile, the predicted position of the C12 chain linked to Cystein114 of CPL could not block the lid opening mechanism which explains the absence of inhibition by C12 -TNB. Surprisingly, when added during the substrate hydrolysis, C12 -TNB activated the TPL but not the CPL that was slightly inhibited under these conditions. The 3D structure model generated for the open forms of C12 -TPL and C12 -CPL complexes showed that Cystein114 is still accessible and might react with C12 -TNB. Our models clearly explain the activation of TPL and the partial inhibition of CPL after the binding of the C12 chain to the enzyme.  相似文献   

20.
The effect of myosin LC2 modifications (phosphorylation or selective proteolytic removal of a seven-residue N-terminal peptide) and partial or complete removal of the whole LC2 was studied under various conditions. (1) Actin binding in the absence of ATP is not influenced by the nature of the myosin species (phosphorylated, dephosphorylated or devoid of LC2). (2) A 50% inhibition of K+/EDTA-ATPase was obtained with actin concentrations hardly different when phosphorylated and dephosphorylated myosins were compared (of the order of 5 microM), whereas both myosin devoid of LC2 and myosin in which the LC2 N-terminal peptide has been removed required significantly higher concentrations of actin (13.0 +/- 2 and 12.0 +/- 2.0 microM, respectively). (3) Dissociation of the actomyosin complex at high ionic strength with nucleotides is not influenced by phosphorylation. (4) Actin activation of Mg2+-ATPase is enhanced when LC2 is phosphorylated; no activation enhancement is observed with myosin devoid of LC2. (5) Translational diffusion coefficient measurements of myosin in high-ionic-strength solutions indicate a tendency for LC2-deprived myosin to form autoassociation oligomers. It thus appears that a structural modification (partial cleavage or removal of LC2) induces important structural changes in myosin, pointing to a role for LC2 in the intrinsic conformation of the molecule and its interaction potentialities. Effects of LC2 removal at high ionic strength are best explained by interactions bearing no relationship to physiological functions. A physiologically significant effect of LC2 phosphorylation requires a minimum degree of organization (actomyosin complex) to be expressed in which LC2 could play the role of a return-spring in the cross-bridge mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号