首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blocker-inducednoise analysis of epithelial Na+ channels (ENaCs) was usedto investigate how inhibition of an LY-294002-sensitive phosphatidylinositol 3-kinase (PI 3-kinase) alters Na+transport in unstimulated and aldosterone-prestimulated A6 epithelia. From baseline Na+ transport rates(INa) of 4.0 ± 0.1 (unstimulated) and9.1 ± 0.9 µA/cm2 (aldosterone), 10 µM LY-294002caused, following a relatively small initial increase of transport, acompletely reversible inhibition of transport within 90 min to 33 ± 6% and 38 ± 2% of respective baseline values. Initialincreases of transport could be attributed to increases of channel openprobability (Po) within 5 min to 143 ± 17% (unstimulated) and 142 ± 10% of control (aldosterone) frombaseline Po averaging near 0.5. Inhibition oftransport was due to much slower decreases of functional channeldensities (NT) to 28 ± 4% (unstimulated)and 35 ± 3% (aldosterone) of control at 90 min. LY-294002 (50 µM) caused larger but completely reversible increases ofPo (215 ± 38% of control at 5 min) andmore rapid but only slightly larger decreases ofNT. Basolateral exposure to LY-294002 induced nodetectable effect on transport, Po or NT. We conclude that an LY-294002-sensitive PI3-kinase plays an important role in regulation of transport bymodulating NT and Po ofENaCs, but only when presented to apical surfaces of the cells.

  相似文献   

2.
ENaC-EGFP (enhanced green fluorescentprotein-tagged -subunit of the epithelial Na+ channel)stably transfected clonal lines derived from the A6 parental cell linewere used to study the physical mechanisms of insulin-stimulatedNa+ transport. Within 1 min of insulin stimulation, ENaCmigrates from a diffuse cytoplasmic localization to the apical andlateral membranes. Concurrently, after insulin stimulation,phosphatidylinositol 3-kinase (PI 3-kinase) is colocalized with ENaC onthe lateral but not apical membrane. An inhibitor of PI 3-kinase,LY-294002, does not inhibit ENaC/PI 3-kinase colocalization but doesalter the intracellular site of the colocalization, preventing thetranslocation of ENaC to the lateral and apical membranes. These datashow that insulin stimulation causes the migration of ENaC to thelateral and apical cell membranes and that this trafficking isdependent on PI 3-kinase activity.

  相似文献   

3.
Serum- and glucocorticoid-induced kinase 1 (SGK1) is thought to be an important regulator of Na+ reabsorption in the kidney. It has been proposed that SGK1 mediates the effects of aldosterone on transepithelial Na+ transport. Previous studies have shown that SGK1 increases Na+ transport and epithelial Na+ channel (ENaC) activity in the apical membrane of renal epithelial cells. SGK1 has also been implicated in the modulation of Na+-K+-ATPase activity, the transporter responsible for basolateral Na+ efflux, although this observation has not been confirmed in renal epithelial cells. We examined Na+-K+-ATPase function in an A6 renal epithelial cell line that expresses SGK1 under the control of a tetracycline-inducible promoter. The results showed that expression of a constitutively active mutant of SGK1 (SGK1TS425D) increased the transport activity of Na+-K+-ATPase 2.5-fold. The increase in activity was a direct consequence of activation of the pump itself. The onset of Na+-K+-ATPase activation was observed between 6 and 24 h after induction of SGK1 expression, a delay that is significantly longer than that required for activation of ENaC in the same cell line (1 h). SGK1 and aldosterone stimulated the Na+ pump synergistically, indicating that the pathways mediated by these molecules operate independently. This observation was confirmed by demonstrating that aldosterone, but not SGK1TS425D, induced an 2.5-fold increase in total protein and plasma membrane Na+-K+-ATPase 1-subunit abundance. We conclude that aldosterone increases the abundance of Na+-K+-ATPase, whereas SGK1 may activate existing pumps in the membrane in response to chronic or slowly acting stimuli. sodium transport; serum- and glucocorticoid-induced kinase; A6 cells; sodium pump  相似文献   

4.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca2+-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) in C6 glioma cells. In the present study, we investigated the effects of NSCCs on the ET-1-induced proline-rich tyrosine kinase 2 (PYK2) phosphorylation in C6 glioma cells. In addition, we examined the effects of phosphoinositide 3-kinase (PI3K) on the ET-1-induced NSCCs activation and PYK2 phosphorylation. The PI3K inhibitors wortmannin and LY-294002 inhibited ET-1-induced Ca2+ influx through NSCC-2 but not NSCC-1. On the other hand, addition of these inhibitors after stimulation with ET-1 failed to suppress Ca2+ influx through NSCC-2. PYK2 phosphorylation was abolished by blocking Ca2+ influx through NSCCs. The PI3K inhibitors blocked the NSCC-2-dependent part of ET-1-induced PYK2 phosphorylation. These results indicate that 1) NSCC-2 is stimulated by ET-1 via a PI3K-dependent cascade, whereas NSCC-1 is stimulated via a PI3K-independent cascade; 2) PI3K seems to be required for the activation of the Ca2+ entry, but not for its maintenance; 3) Ca2+ influx through NSCC-1 and NSCC-2 plays an essential role in ET-1-induced PYK2 phosphorylation; and 4) PI3K is involved in the ET-1-induced PYK2 phosphorylation that depends on the Ca2+ influx through NSCC-2. endothelin; phosphoinositide 3-kinase; nonselective cation channel; proline-rich tyrosine kinase 2; glioma cell  相似文献   

5.
Lymphocyte recruitment to sites of inflammation involves a bidirectional series of cues between the endothelial cell (EC) and the leukocyte that culminate in lymphocyte migration into the tissue. Remodeling of the EC F-actin cytoskeleton has been observed after leukocyte adhesion, but the signals to the EC remain poorly defined. We studied the dependence of peripheral blood lymphocyte transendothelial migration (TEM) through an EC monolayer in vitro on EC phosphatidylinositol 3-kinase (PI 3-kinase) activity. Lymphocytes were perfused over cytokine-activated EC using a parallel-plate laminar flow chamber. Inhibition of EC PI 3-kinase activity using LY-294002 or wortmannin decreased lymphocyte TEM (48 +/- 6 or 34 +/- 7%, respectively, vs. control; mean +/- SE; P < 0.05). Similarly, EC knockdown of the p85alpha regulatory subunit of PI 3-kinase decreased lymphocyte transmigration. Treatment of EC with jasplakinolide to inhibit EC F-actin remodeling also decreased lymphocyte TEM to 24 +/- 10% vs. control (P < 0.05). EC PI 3-kinase inhibition did not change the strength of lymphocyte adhesion to the EC or formation of the EC "docking structure" after intercellular adhesion molecule-1 ligation, whereas this was inhibited by jasplakinolide treatment. A similar fraction of lymphocytes migrated on control or LY-294002-treated EC and localized to interendothelial junctions. However, lymphocytes failed to extend processes below the level of vascular endothelial (VE)-cadherin on LY-294002-treated EC. Together these observations indicate that EC PI 3-kinase activity and F-actin remodeling are required during lymphocyte diapedesis and identify a PI 3-kinase-dependent step following initial separation of the VE-cadherin barrier.  相似文献   

6.
The epithelial Na+ channel (ENaC) is an essential channel responsible for Na+ reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.  相似文献   

7.
The relevance of nongenomic pathways to regulation of epithelial function by aldosterone is poorly understood. Recently, we demonstrated that aldosterone inhibits transepithelial HCO3 absorption in the renal medullary thick ascending limb (MTAL) through a nongenomic pathway. Here, we examined the transport mechanism(s) responsible for this regulation, focusing on Na+/H+ exchangers (NHE). In the MTAL, apical NHE3 mediates H+ secretion necessary for HCO3 absorption; basolateral NHE1 influences HCO3 absorption by regulating apical NHE3 activity. In microperfused rat MTALs, the addition of 1 nM aldosterone rapidly decreased HCO3 absorption by 30%. This inhibition was unaffected by three maneuvers that inhibit basolateral Na+/H+ exchange and was preserved in MTALs from NHE1 knockout mice, ruling out the involvement of NHE1. In contrast, exposure to aldosterone for 15 min caused a 30% decrease in apical Na+/H+ exchange activity over the intracellular pH range from 6.5 to 7.7, due to a decrease in Vmax. Inhibition of HCO3 absorption by aldosterone was not affected by 0.1 mM lumen Zn2+ or 1 mM lumen DIDS, arguing against the involvement of an apical H+ conductance or apical K+-HCO3 cotransport. These results demonstrate that aldosterone inhibits HCO3 absorption in the MTAL through inhibition of apical NHE3, and identify NHE3 as a target for nongenomic regulation by aldosterone. Aldosterone may influence a broad range of epithelial transport functions important for extracellular fluid volume and acid-base homeostasis through direct regulation of this exchanger. thick ascending limb; acid-base transport; epithelial Na+ transport; kidney  相似文献   

8.
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IB kinase (IKK)/nuclear factor-B (NF-B) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of 51 integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C- inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca2+ pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca2+ concentration ([Ca2+]i) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca2+]i rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC- activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC--PKC-IKK-NF-B signaling cascade. Another crucial factor, [Ca2+]i increase, may at least be required to activate PKC needed for NF-B activation. nuclear factor-B; phosphatidylinositol 3-kinase; phospholipase C-; protein kinase C; intracellular Ca2+ concentration  相似文献   

9.
The A6 cell line was used to study the role ofS-adenosyl-L-homocysteine hydrolase (SAHHase) inthe aldosterone-induced activation of the epithelial Na+channel (ENaC). Because aldosterone increases methylation of severaldifferent molecules, and because this methylation is associated withincreased Na+ reabsorption, we tested the hypothesis thataldosterone increases the expression and activity of SAHHase protein.The rationale for this work is that general methylation may be promotedby activation of SAHHase, the only enzyme known to metabolize SAH, apotent end-product inhibitor of methylation. Although aldosteroneincreased SAHHase activity, steroid did not affect SAHHase expression.Antisense SAHHase oligonucleotide decreased SAHHaseexpression and activity. Moreover, this oligonucleotide, as well as apharmacological inhibitor of SAHHase, decreased aldosterone-inducedactivity of ENaC via a decrease in ENaC open probability. The kineticsof ENaC in cells treated with antisense plus aldosterone were similarto those reported previously for the channel in the absence of steroid. This is the first report showing that active SAHHase, in part, increases ENaC open probability by reducing the transition rate fromopen states in response to aldosterone. Thus aldosterone-induced SAHHase activity plays a critical role in shifting ENaC from a gatingmode with short open and closed times to one with longer open andclosed times.

  相似文献   

10.
To studythe role of sgk (serum, glucocorticoid-induced kinase) inhormonal regulation of Na+ transport mediated by theepithelial Na+ channel (ENaC), clonal cell lines stablyexpressing human sgk, an S422A sgk mutant, or aD222A sgk mutant were created in the background of the A6model renal epithelial cell line. Expression of normal sgkresults in a 3.5-fold enhancement of basal transport and potentiationof the natriferic response to antidiuretic hormone (ADH). Transfectionof a S422A mutant form of sgk, which cannot bephosphorylated by phosphatidylinositol-dependent kinase (PDK)-2, results in a cell line that is indistinguishable from the parent linein basal and hormone-stimulated Na+ transport. The D222Asgk mutant, which lacks kinase activity, functions as adominant-negative mutant inhibiting basal as well as peptide- andsteroid hormone-stimulated Na+ transport. Thussgk activity is necessary for ENaC-mediated Na+transport. Phosphorylation and activation by PDK-2 are necessary forsgk stimulation of ENaC. Expression of normal sgkover endogenous levels results in a potentiated natriferic response toADH, suggesting that the enzyme is a rate-limiting step for the hormoneresponse. In contrast, sgk does not appear to be therate-limiting step for the cellular response to aldosterone or insulin.

  相似文献   

11.
12.
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) is thought to serve as an oncogenic signaling pathway which can be activated by Ras. The role of PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells is currently not clear. Here we demonstrate that inducible expression of oncogenic Ha-Ras results in activation of PKB/Akt in rat intestinal epithelial cells (RIE-iHa-Ras), which was blocked by treatment with inhibitors of PI3K activity. The PI3K inhibitor, LY-294002, partially reversed the morphological transformation induced by Ha-Ras and resulted in a modest stimulation of apoptosis. The most pronounced phenotypic alteration following inhibition of PI3K was induction of G(1) phase cell cycle arrest. LY-294002 blocked the Ha-Ras-induced expression of cyclin D1, cyclin-dependent kinase (CDK) 2, and increased the levels of p27(kip). Both LY-294002 and wortmannin significantly reduced anchorage-independent growth of RIE-iHa-Ras cells. Forced expression of both the constitutively active forms of Raf (DeltaRaf-22W or Raf BXB) and Akt (Akt-myr) resulted in transformation of RIE cells that was not achieved by transfection with either the Raf mutant construct or Akt-myr alone. These findings delineate an important role for PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells.  相似文献   

13.
Regulation of smooth muscle contraction involves a number of signaling mechanisms that include both kinase and phosphatase reactions. The goal of the present study was to determine the role of one such kinase, phosphatidylinositol (PI)3-kinase, in vascular smooth muscle excitation-contraction coupling. Using intact medial strips of the swine carotid artery, we found that inhibition of PI3-kinase by LY-294002 resulted in a concentration-dependent decrease in the contractile response to both agonist stimulation and membrane depolarization-dependent contractions and a decrease in Ca(2+)-dependent myosin light chain (MLC) phosphorylation, the primary step in the initiation of smooth muscle contraction. Inhibition of PI3-kinase also depressed phorbol dibutyrate-induced contractions, which are not dependent on either Ca(2+) or MLC phosphorylation but are dependent on protein kinase C. To determine the Ca(2+)-dependent site of action of PI3-kinase, we determined the effect of several inhibitors of calcium metabolism on LY-294002-dependent inhibition of contraction. These inhibitors included nifedipine, SK&F-96365, and caffeine. Only SK&F-96365 blocked the LY-294002-dependent inhibition of contraction. Interestingly, all compounds blocked the LY-294002-dependent inhibition of MLC phosphorylation. Our results suggest that activation of PI3-kinase is involved in a Ca(2+)- and MLC phosphorylation-independent pathway for contraction likely to involve protein kinase C. In addition, our results also suggest that activation of PI3-kinase is involved in Ca(2+)-dependent signaling at the level of receptor-operated calcium channels.  相似文献   

14.
Although protein kinase C (PKC) and phosphatidylinositol 3 (PI3)-kinase are implicated in cardioprotective signal transduction mediated by ischemic preconditioning, their role in pharmacological preconditioning (PPC) has not been determined. Cultured neonatal rat cardiomyocytes (CMCs) were subjected to simulated ischemia for 2 h followed by 15 min of reoxygenation. PPC of CMCs consisted of administration of 50 microM adenosine, 50 microM diazoxide, and 50 microM S-nitroso-N-acetylpenicillamine (SNAP), each alone or in combination, for 15 min followed by 30 min of washout before simulated ischemia. Although PKC-epsilon and PI3-kinase were significantly activated during treatment with adenosine, activation of these kinases dissipated after washout. In contrast, PPC combined with adenosine, diazoxide, and SNAP elicited sustained activation of PKC-epsilon and PI-3 kinase after washout. The combined-PPC, but not the single-PPC, protocol conferred antiapoptotic and antinecrotic effects after reoxygenation. The PKC inhibitor chelerythrine (5 microM) or the PI3-kinase inhibitor LY-294002 (10 microM) given during the washout period partially blocked the activation of PKC-epsilon and PI3-kinase mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely inhibited activation of PKC-epsilon and PI3-kinase. Chelerythrine or LY-294002 partially blocked antiapoptotic and antinecrotic effects mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely abrogated antiapoptotic and antinecrotic effects. These results suggest that the combined-PPC protocol confers cardioprotective memory through sustained and interdependent activation of PKC and PI3-kinase.  相似文献   

15.
Cardiotonic glycosides, like ouabain, inhibit Na+-K+-ATPase. Recent evidence suggests that low molar concentrations of ouabain alter cell growth. Studies were conducted to examine the effect of ouabain on Akt phosphorylation and rate of cell proliferation in opossum kidney (OK) proximal tubule cells. Cells exposed to 10 nM ouabain displayed increased Akt Ser473 phosphorylation, as evidenced by an increase in phospho-Akt Ser473 band density. Ouabain-stimulated Akt Ser473 phosphorylation was inhibited by pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 and wortmannin), a PLC inhibitor (edelfosine), and an Akt inhibitor. Moreover, ouabain-mediated Akt Ser473 phosphorylation was suppressed by reduction of extracellular calcium (EGTA) or when intracellular calcium was buffered by BAPTA-AM. An inhibitor of calcium store release (TMB-8) and an inhibitor of calcium entry via store-operated calcium channels (SKF96365) also suppressed ouabain-mediated Akt Ser473 phosphorylation. In fura-2 AM-loaded cells, 10 nM ouabain increased capacitative calcium entry (CCE). Ouabain at 10 nM did not significantly alter baseline cytoplasmic calcium concentration in control cells. However, treatment with 10 nM ouabain caused a significantly higher ATP-mediated calcium store release. After 24 h, 10 nM ouabain increased the rate of cell proliferation. The Akt inhibitor, BAPTA-AM, SKF96365, and cyclopiazonic acid suppressed the increase in the rate of cell proliferation caused by 10 nM ouabain. Ouabain at 10 nM caused a detectable increase in 86Rb uptake but did not significantly alter Na+-K+-ATPase (ouabain-sensitive pNPPase) activity in crude membranes or cell sodium content. Taken together, the results point to a role for CCE and Akt phosphorylation, in response to low concentrations of ouabain, that increase the rate of cell proliferation without inhibiting Na+-K+-ATPase-mediated ion transport. Na+-K+-ATPase; opossum kidney cells  相似文献   

16.
Hormonal regulation of ENaCs: insulin and aldosterone   总被引:6,自引:0,他引:6  
Although a variety of hormones and other agents modulate renalNa+ transport acting by way of theepithelial Na+ channel (ENaC), themode(s), pathways, and their interrelationships in regulation of thechannel remain largely unknown. It is likely that several hormones maybe present concurrently in vivo, and it is, therefore, important tounderstand potential interactions among the various regulatory factorsas they interact with the Na+transport pathway to effect modulation ofNa+ reabsorption in distal tubulesand other native tissues. This study represents specifically adetermination of the interaction between two hormones, namely,aldosterone and insulin, which stimulate Na+ transport by entirelydifferent mechanisms. We have used a noninvasive pulse protocol ofblocker-induced noise analysis to determine changes in single-channelcurrent (iNa),channel open probability (Po), andfunctional channel density(NT) ofamiloride-sensitive ENaCs at various time points following treatmentwith insulin for 3 h of unstimulated control and aldosterone-pretreatedA6 epithelia. Independent of threefold differences of baseline values of transport caused by aldosterone, 20 nM insulin increased by threefold and within 10-30 min the density of the pool of apical membrane ENaCs(NT) involvedin transport. The very early (10 min) increases of channel density wereaccompanied by relatively small decreases ofiNa(10-20%) and decreases ofPo (28%) in the aldosterone-pretreated tissues but not the control unstimulated tissues. The early changes ofiNa,Po, andNT weretransient, returning very slowly over 3 h toward their respectivecontrol values at the time of addition of insulin. We conclude thataldosterone and insulin act independently to stimulate apicalNa+ entry into the cells of A6epithelia by increase of channel density.

  相似文献   

17.
The vacuolar H+-ATPase (V-ATPase) acidifies compartments of the vacuolar system of eukaryotic cells. In renal epithelial cells, it resides on the plasma membrane and is essential for bicarbonate transport and acid-base homeostasis. The factors that regulate the H+-ATPase remain largely unknown. The present study examines the effect of glucose on H+-ATPase activity in the pig kidney epithelial cell line LLC-PK1. Cellular pH was measured by performing ratiometric fluorescence microscopy using the pH-sensitive indicator BCECF-AM. Intracellular acidification was induced with NH3/NH4+ prepulse, and rates of intracellular pH (pHi) recovery (after in situ calibration) were determined by the slopes of linear regression lines during the first 3 min of recovery. The solutions contained 1 µM ethylisopropylamiloride and were K+ free to eliminate Na+/H+ exchange and H+-K+-ATPase activity. After NH3/NH4+-induced acidification, LLC-PK1 cells had a significant pHi recovery rate that was inhibited entirely by 100 nM of the V-ATPase inhibitor concanamycin A. Acute removal of glucose from medium markedly reduced V-ATPase-dependent pHi recovery activity. Readdition of glucose induced concentration-dependent reactivation of V-ATPase pHi recovery activity within 2 min. Glucose replacement produced no significant change in cell ATP or ADP content. H+-ATPase activity was completely inhibited by the glycolytic inhibitor 2-deoxy-D-glucose (20 mM) but only partially inhibited by the mitochondrial electron transport inhibitor antimycin A (20 µM). The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (500 nM) abolished glucose activation of V-ATPase, and activity was restored after wortmannin removal. Glucose activates V-ATPase activity in kidney epithelial cells through the glycolytic pathway by a signaling pathway that requires PI3K activity. These findings represent an entirely new physiological effect of glucose, linking it to cellular proton secretion and vacuolar acidification. proton secretion; glycolysis; intracellular pH; concanamycin A  相似文献   

18.
Several studies have shown that nitric oxide (NO) inhibits Na+ transport in renal and alveolar monolayers. However, the mechanisms by which NO alters epithelial Na+ channel (ENaC) activity is unclear. Therefore, we examined the effect of applying the NO donor drug L-propanamine 3,2-hydroxy-2-nitroso-1-propylhidrazino (PAPA-NONOate) to cultured renal epithelial cells. A6 and M1 cells were maintained on permeable supports in medium containing 1.5 µM dexamethasone and 10% bovine serum. After 1.5 µM PAPA-NONOate was applied, amiloride-sensitive short-circuit current measurements decreased 29% in A6 cells and 44% in M1 cells. This differed significantly from the 3% and 19% decreases in A6 and M1 cells, respectively, treated with control donor compound (P < 0.0005). Subsequent application of PAPA-NONOate to amiloride-treated control (no NONOate) A6 and M1 cells did not further decrease transepithelial current. In single-channel patch-clamp studies, NONOate significantly decreased ENaC open probability (Po) from 0.186 ± 0.043 to 0.045 ± 0.009 (n = 7; P < 0.05) without changing the unitary current. We also showed that aldosterone significantly decreased NO production in primary cultures of alveolar type II (ATII) epithelial cells. Because inducible nitric oxide synthase (iNOS) coimmunoprecipitated with the serum- and glucocorticoid-inducible kinase (SGK1) and both proteins colocalized in the cytoplasm (as shown in our studies in mouse ATII cells), SGK1 may also be important in regulating NO production in the alveolar epithelium. Our study also identified iNOS as a novel SGK1 phosphorylated protein (at S733 and S903 residues in miNOS) suggesting that one way in which SGK1 could increase Na+ transport is by altering iNOS production of NO. aldosterone; epithelial sodium channel; serum- and glycocorticoid-inducible kinase  相似文献   

19.
Phosphatidylinositol 3-kinase (PI3-kinase) activates protein kinase B (also known as Akt), which phosphorylates and activates a cyclic nucleotide phosphodiesterase 3B. Increases in cyclic nucleotide concentrations inhibit agonist-induced contraction of vascular smooth muscle. Thus we hypothesized that the PI3-kinase/Akt pathway may regulate vascular smooth muscle tone. In unstimulated, intact bovine carotid artery smooth muscle, the basal phosphorylation of Akt was higher than that in cultured smooth muscle cells. The phosphorylation of Akt decreases in a time-dependent manner when incubated with the PI3-kinase inhibitor, LY-294002. Agonist (serotonin)-, phorbol ester (phorbol 12,13-dibutyrate; PDBu)-, and depolarization (KCl)-induced contractions of vascular smooth muscles were all inhibited in a dose-dependent fashion by LY-294002. However, LY-294002 did not inhibit serotonin- or PDBu-induced increases in myosin light chain phosphorylation or total O(2) consumption, suggesting that inhibition of contraction was not mediated by reversal or inhibition of the pathways that lead to smooth muscle activation and contraction. Treatment of vascular smooth muscle with LY-294002 increased the activity of cAMP-dependent protein kinase and increased the phosphorylation of the cAMP-dependent protein kinase substrate heat shock protein 20 (HSP20). These data suggest that activation of the PI3-kinase/Akt pathway in unstimulated smooth muscle may modulate vascular smooth muscle tone (allow agonist-induced contraction) through inhibition of the cyclic nucleotide/HSP20 pathway and suggest that cyclic nucleotide-dependent inhibition of contraction is dissociated from the myosin light chain contractile regulatory pathways.  相似文献   

20.
Using MDCK cells as a model system, evidence is presented demonstrating that the signaling pathways mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI 3-kinase) play important roles in the regulation of epithelial tubule formation. Incubation of cells with collagen gel overlays induced early (4-8 h) reorganization of cells (epithelial remodeling) into three-dimensional multicellular tubular structures over 24 h. An MDCK cell line stably expressing the PH domain of Akt, a PI 3-kinase downstream effector, coupled to green fluorescent protein (GFP-Akt-PH) was used to determine the distribution of phosphatidyl inositol-3,4,5-P(3) (PIP(3)), a product of PI 3-kinase. GFP-Akt-PH was associated with lateral membranes in control cells. After incubation with collagen gel overlays, GFP-Akt-PH redistributed into the lamellipodia of migrating cells suggesting that PIP(3) plays a role in epithelial remodeling. Using the small molecule inhibitor LY-294002 that inhibits both mTOR and PI 3-kinase, we demonstrated that kinase activity was required for epithelial remodeling, disruption of cell junctions and subsequent modulation of tubule formation. Since the mTOR signaling pathway is downstream of PI 3-kinase, the effects of rapamycin, a specific mTOR inhibitor, on tubule formation were assessed. Rapamycin did not affect epithelial remodeling or GFP-Akt-PH redistribution but inhibited elongated tubule formation that occurred later (24 h) in morphogenesis. These results were further supported by using RNA interference to down-regulate mTOR and inhibit tubule formation. Our studies demonstrate that PI 3-kinase regulates early epithelial remodeling stages while mTOR modulates latter stages of tubule development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号