首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T. cruzi up-regulates the expression of thrombospondin-1 (TSP-1) to enhance the process of cellular invasion. Here we characterize a novel TSP-1 interaction with T. cruzi that enhances cellular infection. We show that labeled TSP-1 interacts specifically with the surface of T. cruzi trypomastigotes. We used TSP-1 to pull down interacting parasite surface proteins that were identified by mass spectrometry. We also show that full length TSP-1 and the N-terminal domain of TSP-1 (NTSP) interact with T. cruzi surface calreticulin (TcCRT) and other surface proteins. Pre-exposure of recombinant NTSP or TSP-1 to T. cruzi significantly enhances cellular infection of wild type mouse embryo fibroblasts (MEF) compared to the C-terminal domain of TSP-1, E3T3C1. In addition, blocking TcCRT with antibodies significantly inhibits the enhancement of cellular infection mediated by the TcCRT-TSP-1 interaction. Taken together, our findings indicate that TSP-1 interacts with TcCRT on the surface of T. cruzi through the NTSP domain and that this interaction enhances cellular infection. Thus surface TcCRT is a virulent factor that enhances the pathogenesis of T. cruzi infection through TSP-1, which is up-regulated by the parasite.  相似文献   

2.
The innate immune system is the first mechanism of vertebrate defense against pathogen infection. In this study, we present evidence for a novel immune evasion mechanism of Trypanosoma cruzi, mediated by host cell plasma membrane-derived vesicles. We found that T. cruzi metacyclic trypomastigotes induced microvesicle release from blood cells early in infection. Upon their release, microvesicles formed a complex on the T. cruzi surface with the complement C3 convertase, leading to its stabilization and inhibition, and ultimately resulting in increased parasite survival. Furthermore, we found that TGF-β-bearing microvesicles released from monocytes and lymphocytes promoted rapid cell invasion by T. cruzi, which also contributed to parasites escaping the complement attack. In addition, in vivo infection with T. cruzi showed a rapid increase of microvesicle levels in mouse plasma, and infection with exogenous microvesicles resulted in increased T. cruzi parasitemia. Altogether, these data support a role for microvesicles contributing to T. cruzi evasion of innate immunity.  相似文献   

3.
Activation of cells from the innate immune system has an important role in host resistance to early infection with the intracellular protozoan parasite, Trypanosoma cruzi. Here we review the studies that have identified and structurally characterized the glycosylphosphatidylinositol (GPI) anchors, as parasite molecules responsible for the activation of cells from the macrophage lineage. We also cover the studies that have identified the receptor, signaling pathways as well as the array of genes expressed in macrophages that are activated by these glycoconjugates. We discuss the possible implications of such response on the host resistance to T. cruzi infection and the pathogenesis of Chagas disease.  相似文献   

4.
During the acute phase of infection, T. cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas'disease have not been fully identified. GPI-anchored mucins, glycoinositolphospholipids, and glycoproteins comprise some of the most abundant T. cruzi surface molecules. IL-10 IFN-γ-secreting CD4+ T cells are activated during chronic infections and are responsible for prolonged persistence of parasite and for host protection against severe inflammatory responses. In this work we evaluated the role of rMBP::SSP4 protein of T. cruzi, a recombinant protein derived from a GPI anchored antigen, SSP4, as an immunomodulator molecule, finding that it was able to induce high concentrations of IL-10 and IFN-γ both in vivo and in vitro; during this last condition, both cytokines were produced by IL-10-IFN-γ-secreting CD4+ T cells.  相似文献   

5.
Cytoadherence is an important step for the invasion of a mammalian host cell by Trypanosoma cruzi. Cell surface macromolecules are implicated in the T. cruzi-cardiomyocyte recognition process. Therefore, we investigated the role of cell surface proteoglycans during this invasion process and analyzed their expression after the parasite infected the target cells. Treatment of trypomastigote forms of T. cruzi with soluble heparan sulfate resulted in a significant inhibition in successful invasion, while chondroitin sulfate had no effect. Removal of sulfated glycoconjugates from the cardiomyocyte surface using glycosaminoglycan (GAG) lyases demonstrated the specific binding of the parasites to heparan sulfate proteoglycans. Infection levels were reduced by 42% whenthe host cells were previously treated with heparitinase II. No changes were detected in the expression of GAGs infected cardiomyocytes even after 96 h of infection. Our data demonstrate that heparan sulfate proteoglycans, but not chondroitin sulfate, mediate both attachment and invasion of cardiomyocytes by T. cruzi.  相似文献   

6.
The surface of the protozoan parasite Trypanosoma cruzi is covered in mucins, which contribute to parasite protection and to the establishment of a persistent infection. Their importance is highlighted by the fact that the approximately 850 mucin-encoding genes comprise approximately 1% of the parasite genome and approximately 6% of all predicted T. cruzi genes. The coordinate expression of a large repertoire of mucins containing variable regions in the mammal-dwelling stages of the T. cruzi life cycle suggests a possible strategy to thwart the host immune response. Here, we discuss the expression profiling of T. cruzi mucins, the mechanisms leading to the acquisition of mucin diversity and the possible consequences of a mosaic surface coat in the interplay between parasite and host.  相似文献   

7.
Trypanosoma cruzi, the causative agent of Chagas' disease, infects an estimated 12 million people in Latin America and may induce cardiopathy and megaformation of the oesophagus and colon. During the early, acute stage of the infection, parasite-induced inflammatory infiltrates may cause transitory disease which terminates with the emergence of an immune response sufficient to reduce the parasite to insignificant levels. Even so, severe disease may develop many years after the original infection. It has been suggested that this might result from an autoimmune process triggered by the parasite and mediated either (1) by the adsorption of parasite antigens to host cells, thus rendering these cells susceptible to the host's own antiparasite immune response, or (2) via cross-reactive antigens shared by the host and parasite. In common with many parasitic diseases, there is an urgent need for studies on the T-cell response to T cruzi infection, as this might not only hold the key to the immunopathology but also serve as a means of clearing this lifelong infection which survives by sequestering into an intracellular site.  相似文献   

8.
9.
Trypanosoma cruzi infection leads to development of chronic Chagas disease. In this article, we provide an update on the current knowledge of the mechanisms employed by the parasite to gain entry into the host cells and establish persistent infection despite activation of a potent immune response by the host. Recent studies point to a number of T. cruzi molecules that interact with host cell receptors to promote parasite invasion of the diverse host cells. T. cruzi expresses an antioxidant system and thromboxane A(2) to evade phagosomal oxidative assault and suppress the host's ability to clear parasites. Additional studies suggest that besides cardiac and smooth muscle cells that are the major target of T. cruzi infection, adipocytes and adipose tissue serve as reservoirs from where T. cruzi can recrudesce and cause disease decades later. Further, T. cruzi employs at least four strategies to maintain a symbiotic-like relationship with the host, and ensure consistent supply of nutrients for its own survival and long-term persistence. Ongoing and future research will continue to help refining the models of T. cruzi invasion and persistence in diverse tissues and organs in the host.  相似文献   

10.
A2M is a broad spectrum proteinase inhibitor and cytokine carrier, besides presenting anti-apoptotic activity through the binding to its receptor, LRP. During Trypanosoma cruzi infection, apoptosis of host cells and intracellular parasites is commonly observed both in vivo and in vitro. Since plasma as well as tissue A2M levels are increased in both murine and human acute T. cruzi infection, we evaluated the possible role of A2M (its methylamine transformed Fast form-A2M-F) in regulating apoptotic events in peritoneal macrophages and cardiomyocytes during in vitro interaction with the parasite. Our data showed that DNA fragmentation (a hallmark of apoptosis) of both host cells and parasites was inhibited by A2M-F. Impaired apoptosis was also noted when A2M-F was added to the cultures maintained under serum deprivation. In addition, macrophages from C57/BL6 mice, known to display higher LRP levels as compared to those of C3H lineage, displayed higher reduction in the apoptotic levels during the A2M-F treatment.  相似文献   

11.
The macrophage mannose receptor (MR) is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz) is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo) interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand) biased nitric oxide (NO)/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and intracellular parasite growth.  相似文献   

12.
Host resistance to the intracellular protozoan parasite Trypanosoma cruzi depends on IFN-gamma production by T cells and NK cells. However, the involvement of innate immunity in host resistance to T. cruzi remains unclear. In the present study, we investigated host defense against T. cruzi by focusing on innate immunity. Macrophages and dendritic cells (DCs) from MyD88(-/-)TRIF(-/-) mice, in which TLR-dependent activation of innate immunity was abolished, were defective in the clearance of T. cruzi and showed impaired induction of IFN-beta during T. cruzi infection. Neutralization of IFN-beta in MyD88(-/-) macrophages led to enhanced T. cruzi growth. Cells from MyD88(-/-)IFNAR1(-/-) mice also showed impaired T. cruzi clearance. Furthermore, both MyD88(-/-)TRIF(-/-) and MyD88(-/-)IFNAR1(-/-) mice were highly susceptible to in vivo T. cruzi infection, highlighting the involvement of innate immune responses in T. cruzi infection. We further analyzed the molecular mechanisms for the IFN-beta-mediated antitrypanosomal innate immune responses. MyD88(-/-)TRIF(-/-) and MyD88(-/-)IFNAR1(-/-) macrophages and DCs exhibited defective induction of the GTPase IFN-inducible p47 (IRG47) after T. cruzi infection. RNA interference-mediated reduction of IRG47 expression in MyD88(-/-) macrophages resulted in increased intracellular growth of T. cruzi. These findings suggest that TLR-dependent expression of IFN-beta is involved in resistance to T. cruzi infection through the induction of IRG47.  相似文献   

13.
Multiple signal transduction events are triggered in the host cell during invasion by the protozoan parasite Trypanosoma cruzi. Here, we report the regulation of host cell phosphatydilinositol 3-kinase (PI3K) and protein kinase B (PKB/Akt) activities by T. cruzi during parasite-host cell interaction. Treatment of nonphagocytic cells (Vero, L(6)E(9), and NIH 3T3) and phagocytic cells (human and J774 murine macrophages) with the selective PI3K inhibitors Wortmannin and LY294002 significantly impaired parasite invasion in a dose-dependent fashion. A strong activation of PI3K and PKB/Akt activities in Vero cells was detected when these cells were incubated with trypomastigotes or their isolated membranes. Consistently, we were unable to detect activation of PI3K or PKB/Akt activities in host cells during epimastigote (noninfective) membrane-host cell interaction. Infection of transiently transfected cells containing an inactive mutant PKB showed a significant inhibition of invasion compared with the active mutant-transfected cells. T. cruzi PI3K-like activity was also required in host cell invasion since treatment of trypomastigotes with PI3K inhibitors prior to infection reduced parasite entry. Taken together, these results indicate that PI3K and PKB/Akt activation in parasites, as in host cells induced by T. cruzi, is an early invasion signal required for successful trypomastigote internalization.  相似文献   

14.
15.
The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy.  相似文献   

16.
17.
Trypanosoma cruzi, the causative agent of Chagas' disease in humans, is an intracellular protozoan parasite with the ability to invade a wide variety of mammalian cells by a unique and remarkable process in cell biology that is poorly understood. Here we present evidence suggesting a role for the host phosphatidylinositol (PI) 3-kinases during T. cruzi invasion. The PI 3-kinase inhibitor wortmannin marked inhibited T. cruzi infection when macrophages were pretreated for 20 min at 37 degrees C before inoculation. Infection of macrophages with T. cruzi markedly stimulated the formation of the lipid products of the phosphatidylinositol (PI) 3-kinases, PI 3-phospate, PI 3,4-biphosphate, and PI 3,4,5-triphosphate, but not PI 4-phosphate or PI 4,5-biphosphate. This activation was inhibited by wortmannin. Infection with T. cruzi also stimulated a marked increase in the in vitro lipid kinase activities that are present in the immunoprecipitates of anti-p85 subunit of class I PI 3-kinase and anti-phosphotyrosine. In addition, T. cruzi invasion also activated lipid kinase activity found in immunoprecipitates of class II and class III PI 3-kinases. These data demonstrate that T. cruzi invasion into macrophages strongly activates separated PI 3-kinase isoforms. Furthermore, the inhibition of the class I and class III PI 3-kinase activities abolishes the parasite entry into macrophages. These findings suggest a prominent role for the host PI 3-kinase activities during the T. cruzi infection process.  相似文献   

18.
19.
Congenital infection with Trypanosoma cruzi is a global problem, occurring on average in 5% of children born from chronically infected mothers in endemic areas, with variations depending on the region. This presentation aims to focus on and update epidemiological data, research methods, involved factors, control strategy and possible prevention of congenital infection with T. cruzi. Considering that etiological treatment of the child is always effective if performed before one year of age, the diagnosis of infection in pregnant women and their newborns has to become the standard of care and integrated into the surveillance programs of syphilis and human immunodeficiency virus. In addition to the standard tests, polymerase chain reaction performed on blood of neonates of infected mothers one month after birth might improve the diagnosis of congenital infection. Recent data bring out that its transmission can be prevented through treatment of infected women before they become pregnant. The role of parasite genotypes and host genetic factors in parasite transmission and development of infection in foetuses/neonates has to be more investigated in order to better estimate the risk factors and impact on health of congenital infection with T. cruzi.  相似文献   

20.
The mechanism by which Trypanosoma cruzi egresses from infected cells at the end of the intracellular replication cycle is not understood. This study explored the role of T. cruzi-derived proteases and host-cell membrane permeability during the parasite's egress process. Treatment with a fluoromethyl ketone, known to inhibit the parasite's major protease, significantly reduced parasite egress. In addition, in the late stages of intracellular infection, cells infected with T. cruzi showed increased permeability as evidenced by dye exclusion tests. Furthermore, parasites could be antibody stained inside host cells without chemical permeabilization of the plasma membrane. These results suggest that in advanced stages of the intracellular cycle of T. cruzi, the host cells lose membrane integrity. Previous studies in our laboratory have found that antibodies present in sera of mice chronically infected with T. cruzi (antiegressin) bind the surface of infected cells and reduce parasite egress. In agreement with these reports, western blot analysis showed that several proteins in infected cell membrane extracts reacted with antibodies from infected mouse serum. The findings reported herein might have implications in the process of T. cruzi egress, as well as in the mechanism of action of antiegressin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号