首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turnover of plasma free arachidonic and oleic acids was determined in healthy men and women. The plasma pool of arachidonic acid in the men was 75 per cent higher than in the women. The fractional turnover of arachidonate was 0.80 +/- 0.04 min(-1) in the women and 0.47 +/- 0.04 min(-1) in the men. The turnover rate of arachidonic acid was similar in both sexes; calculated per kg body weight it was significantly higher in the women. No sex differences were observed in the concentration or turnover of plasma free oleic acid when corrected for differences in body size. The composition of the free fatty acid fraction differed between the sexes, the female subjects having a lower proportion of saturated fatty acids and higher proportions of oleic and eicosenoic acids. The results indicate that the metabolism of polyunsaturated fatty acids in man is influenced by gonadal steroid hormones.  相似文献   

2.
The use of tracer fatty acids in the study of free fatty acid (FFA) metabolism in man is reviewed in light of the present knowledge of the metabolism of individual FFA. The fractional turnovers of palmitic, stearic and oleic acids are very similar and close to the values reported for the total plasma FFA. The fractional turnover of the polyunsaturated arachidonic acid is higher and there is also a sex difference, women showing 70% higher values than men. Splanchnic fractional uptake differs considerably among the individual FFA, while muscle uptake is virtually independent of the chemical structure of the fatty acid. It is concluded that labeled oleic or palmitic acid can be used as tracers for the total FFA fraction when studying the whole body turnover in the postabsorptive state. In other situations, conclusions from result of tracer experiments should be limited to the particular fatty acid studied. For measurements of splanchnic FFA metabolism, no single fatty acid seems to be adequate as a tracer for the total FFA fraction.  相似文献   

3.
Role of triglycerides in endothelial cell arachidonic acid metabolism   总被引:3,自引:0,他引:3  
Arachidonic acid was incorporated into triglycerides by cultured bovine endothelial cells in a time- and concentration-dependent manner. At 75 microM or higher, more arachidonic acid was incorporated into triglycerides than into phospholipids. The triglyceride content of the cells increased as much as 5.5-fold, cytoplasmic inclusions appeared, and arachidonic acid comprised 22% of the triglyceride fatty acids. Triglyceride turnover occurred during subsequent maintenance culture; there was a 60% decrease in the radioactive arachidonic acid contained in triglycerides and a 40% decrease in triglyceride content in 6 hr. Most of the radioactivity was released into the medium as free fatty acid. The turnover of arachidonic acid, but not oleic acid in cellular triglycerides, decreased when supplemental fatty acid was added to the maintenance medium. Incorporation and turnover of radioactive arachidonic acid in triglycerides also was observed in human skin fibroblasts, 3T3-L1 cells, and MDCK cells. Other fatty acids were incorporated into triglycerides by the endothelial cells; the amounts after a 16-hr incubation with 50 microM fatty acid were 20:3 greater than 20:4 greater than 18:1 greater than 18:2 greater than 22:6 greater than 16:0 greater than 20:5. These findings indicate that triglyceride formation and turnover can play a role in the fatty acid metabolism of endothelial cells and that arachidonic acid can be stored in endothelial cell triglycerides.  相似文献   

4.
During feeding experiments with [omega-14C]oleic acid and [omega-14c]nervonic acid to adult rats, 14C-labelled C26, C28 and C30 fatty acids were recovered from the intestinal mucosa, liver, plasma, kidney and stools. The structures of these fatty acids were determined by g.l.c., radio-g.l.c. and mass spectrometry. The Schmidt and Ginger degradation methods indicated that most of the 14C found in these extra-long fatty acids remained in the omega position. These radioactive extra-long fatty acids were found mainly in the polar lipids of rats killed 3 or 15 h after being fed on labelled oleic acid or nervonic acid. Rats killed 63 h later yielded only traces of these extra-long fatty acids. When the rats were given antibiotics or received the same radioactive fatty acids by intravenous injection, the labelled extra-long fatty acids could not be detected in any of the tissues. We conclude that they were probably synthesized by elongation of oleic acid and nervonic acid by intestinal micro-organisms (probably yeasts) and then absorbed by the intestinal mucosa.  相似文献   

5.
The effect of various fatty acids on lipid peroxidation of liver microsomes induced by different methods in vitro was studied using oxygen uptake and malonaldehyde (MDA) production. It was observed that fatty acids with a single double bond are effective inhibitors of peroxidation. Stereo and positional isomers of oleic acid were equally effective as oleic acid. There was an absolute requirement for a free carboxyl group, since methyl esters of fatty acids and long-chain saturated and unsaturated hydrocarbons could not inhibit peroxidation. Saturated fatty acids with a chain length of 12-16 carbon atoms showed inhibition, whereas more than 18 carbon atoms reduced the inhibitory capacity. Fatty acids of lower chain length such as capric and caprylic acids did not show inhibition. Fatty acid inhibition was partially reversed by increasing the concentration of iron in the system. Peroxidation induced by methods which were independent of iron was not inhibited by fatty acids. It was observed that intestinal microsomes which were resistant to peroxidation due to the presence of nonesterified fatty acids in their membrane lipids were able to peroxidise by methods which do not require iron. These results suggest that certain fatty acids inhibit peroxidation by chelating available free iron. In addition, they may also be involved in competing with the esterified fatty acids in the membrane lipids which are the substrates for peroxidation.  相似文献   

6.
To assess the possible role of altered hepatic processing of free fatty acids in dietary sucrose-induced accumulation of triglyceride in the liver and blood plasma, livers from rats fed commercial laboratory stock and high sucrose diets were perfused both with and without oleic acid substrate. Consumption of the sucrose diet exerted a multiplicity of effects on oleic acid metabolism, characterized by decreased conversion to both ketone bodies and carbon dioxide, increased esterification into liver triglyceride, and increased secretion in triglyceride-rich lipoproteins. During the infusion of oleic acid, livers from sucrose-fed rats also exhibited decreased ketogenesis, and increased secretion of triglyceride from endogenous sources. Since oleic acid uptake from the perfusion medium was identical in both groups, the observed effects of sucrose feeding are ascribed to altered rates of intracellular metabolic processes. Mass and radiochemical analyses of perfusate ketone bodies and triglycerides were indicative of greater mobilization of triglycerides from hepatocellular lipid droplets in the livers from sucrose-fed rats. These livers contained more triglyceride and secreted more triglyceride even in the absence of infused oleic acid. In summary, the sucrose-rich diet increased the esterification:oxidation ratio of intracellular free fatty acids derived from both the circulation and endogenous sources within the hepatocyte. In response, secretion of triglyceride-rich lipoproteins by the liver and deposition of triglyceride within the liver were promoted. It is concluded that alterations in the processing of free fatty acids by the liver contribute significantly to the liver and plasma triglyceride accumulation following sucrose consumption.  相似文献   

7.
The turnover of plasma free fatty acid (FFA) was studied during the recovery from exercise with the aid of a continuous infusion of 14C-labeled oleic acid. Arterial FFA reached a maximum of twice the exercise value after 6 min of recovery and was still 75% above the basal level after 20 min. Within 2 min after exercise, plasma radioactivity had increased and the specific activity of plasma oleic acid had fallen. The rate of uptake of FFA from the plasma pool rsoe by 40% during the first minutes after exercise. The rate of release of FFA to the plasma pool showed a peak 2 min after exercise and was thereafter about 40 mumol/min lower than the rate of uptake. The fractional turnover of FFA decreased to resting levels within 5-10 min after exercise. It is concluded that the postexercise peak in arterial FFA is a consequence of augmented release of FFA into the plasma pool above the level during exercise, possibly related to the release of sympathetic vasoconstrictor tone. As a consequence, the rate of removal of FFA rises at the end of exercise and remains augmented above the basal level for as long as the arterial concentration is increased.  相似文献   

8.
The permeability properties of liposomes prepared at pH 8.7 from a fatty acid and either methyl oleate or methyl elaidate, with or without cholesterol, were investigated. The fatty acids used were oleic acid, elaidic acid, and the selenium-containing fatty acids 9-selenaheptadecanoic acid and 13-selenaheneicosanoic acid. The liposomes trapped sucrose and carboxyfluorescein. Their volume change resulting from osmotic shock was directly proportional to the change in absorbance (light scattering). Liposomes prepared from oleic acid and either methyl oleate or methyl elaidate underwent osmotic swelling much more slowly than liposomes prepared from elaidic acid and either methyl oleate or methyl elaidate. Incorporation of cholesterol decreased the initial rate of erythritol permeation, especially in liposomes containing methyl oleate. The swelling rates of liposomes prepared with the selenium-containing fatty acids indicated that incorporation of methyl elaidate gave more tightly packed bilayers than did incorporation of methyl oleate. The effect of cholesterol on the initial rate of erythritol influx was greater in oleic acid and elaidic acid liposomes than in selenium-containing fatty acid liposomes, indicating that the large bulk of the selenium heteroatom suppresses the ability of cholesterol to interact with the hydrocarbon chain.  相似文献   

9.
The turnover rates of palmitate and oleate were measured in vivo by continuous infusion of 1-[14C]palmitate and 9,10-[3H]oleate in rainbow trout. Our goals were: (1) to quantify the incorporation of a saturated and of a monounsaturated fatty acid into other classes of plasma lipids (neutral lipids, NL, and phospholipids, PL); and (2) to determine whether they could both be used as tracers to quantify fluxes of total non-esterified fatty acids (NEFA). We found that both acids play very different physiological roles because palmitate is preferentially channeled towards plasma PL, whereas oleate is mainly incorporated in circulating NL. Consequently, palmitate is predominantly involved in membrane PL turnover and oleate in the metabolism of circulating NL that may be used to shuttle oxidative fuel in teleosts. Despite this striking difference in their metabolism, palmitate and oleate have flux rates that are proportional to their relative abundance in plasma NEFA (i.e. they have the same fractional turnover rate). They can therefore both be used as reliable tracers to quantify the kinetics of total NEFA.  相似文献   

10.
Obesity is associated with hyperlipidemia and enlarged intramyocellular triglyceride (imcTG) stores. The latter is strongly correlated with muscle insulin resistance. However, whether hyperlipidemia plays a role in imcTG accumulation is unknown. In the present study, the effects of plasma fatty acids on imcTG fractional turnover rate (FTR) and synthesis in skeletal muscle of high fat-fed obese rats have been examined using pulse-chase technique. imcTG was prelabeled (pulse) by continuous infusion of U- (14)Cglycerol and then the loss of (14)C-labels from imcTG was chased while exogenous fatty acids were infused at 0 (saline), 1 (L) or 3 (H) micromol/kg/min. imcTG synthesis was determined using 2- (3)Hglycerol during the chase. L and H fatty acid infusions raised plasma fatty acids by 14% (p=0.02) and 30% (p=0.001), respectively, while plasma insulin and glycerol and the rate of glycerol appearance remained unchanged (p>0.05). imcTG FTR was suppressed by 36-40% and 48% in gastrocnemius and tibialis anterior, respectively (both p<0.05), and imcTG synthesis was suppressed by 50-60% in the same muscles (both p<0.05). In contrast, neither turnover nor synthesis of imcTG in soleus was affected by fatty acid infusion (p>0.05). imcTG content and the activities of diglyceride acyltransferase and hormone sensitive lipase were not affected by fatty acid infusion. The findings suggested that elevated plasma fatty acids suppress imcTG turnover and synthesis simultaneously and thus do not appear to promote imcTG accumulation in this obesity model at least in short term.  相似文献   

11.
Biosynthetic activity for mycolic acid occurred in the fluffy layer fraction but not in the 5000g supernatant of Bacterionema matruchotii. With [1-14C]palmitic acid as precursor for the in vitro system, the predominant product was identified as C32:0 mycolic acid by radio-gas-liquid chromatographie (radio-GLC) and gas chromatographic/mass spectroscopic analyses; if [1-14C]stearic acid was used, two major radioactive peaks appeared on GLC: one corresponding to the peak of (C34:0 + C34:1) mycolic acids and the other to (C36:0 + C36:1) mycolic acids. By pyrolysis/radio-GLC analysis, C32:0 mycolic acid synthesized by [1-14C]palmitic acid was pyrolyzed at 300 °C to form palmitaldehyde (the mero moiety) and methyl palmitate (the branch moiety). The pH optimum for the incorporation of [1-14C]palmitate into bacterionema mycolic acids was 6.4 and the reaction required a divalent cation. The in vitro system utilized myristic, palmitic, stearic and oleic acids (probably via their activated forms) well as precursors, among which myristic and palmitic acids were more effective than the rest. Avidin showed no effect on the biosynthesis of mycolic acid from 14C-palmitate whereas cerulenin, a specific inhibitor of β-ketoacyl synthetase in de novo fatty acid synthesis, inhibited the reaction at a relatively higher concentration. Thin-layer chromatographic analysis of lipids extracted from the reacting mixture without alkaline hydrolysis showed that both exogenous [1-14] fatty acid and synthesized mycolic acids were bound to an unknown compound by an alkali-labile linkage and this association seemed to occur prior to the condensation of two molecules of fatty acid.  相似文献   

12.
Nonesterified long-chain fatty acids may enter cells by free diffusion or by membrane protein transporters. A requirement for proteins to transport fatty acids across the plasma membrane would imply low partitioning of fatty acids into the membrane lipids, and/or a slower rate of diffusion (flip-flop) through the lipid domains compared to the rates of intracellular metabolism of fatty acids. We used both vesicles of the plasma membrane of adipocytes and intact adipocytes to study transmembrane fluxes of externally added oleic acid at concentrations below its solubility limit at pH 7.4. Binding of oleic acid to the plasma membrane was determined by measuring the fluorescent fatty acid-binding protein ADIFAB added to the external medium. Changes in internal pH caused by flip-flop and metabolism were measured by trapping a fluorescent pH indicator in the cells. The metabolic end products of oleic acid were evaluated over the time interval required for the return of intracellular pH to its initial value. The primary findings were that (i) oleic acid rapidly binds with high avidity in the lipid domains of the plasma membrane with an apparent partition coefficient similar to that of protein-free phospholipid bilayers; (ii) oleic acid rapidly crosses the plasma membrane by the flip-flop mechanism (both events occur within 5 s); and (iii) the kinetics of esterification of oleic acid closely follow the time dependence of the recovery of intracellular pH. Any postulated transport mechanism for facilitating translocation of fatty acid across the plasma membrane of adipocytes, including a protein transporter, would have to compete with the highly effective flip-flop mechanism.  相似文献   

13.
Abstract: This study focuses on the potential involvement of carnitine palmitoyltransferase (CRT) on the phospholipid and triglyceride fatty acid turnover in neurons. This category of enzymes, which has been identified in several rat brain tissues, is well known for its role in modulating cellular fatty acid oxidation. Neuronal cell cultures from rat brain cortex incorporated radioactive palmitate or oleate into phospholipids and triglycerides. The largest fraction of radioactive fatty acids was recovered in phosphatidyl- choline followed by triglycerides and, to a lesser extent, phosphatidylethanolamine. CPT activity measured in neuronal lysates obtained from neurons treated with 40 μ M 2-tetradecylglycidic acid (TDGA) was almost completely abolished. Furthermore, between 2 and 10 μ M TDGA CPT activity dropped more rapidly than between 10 and 40 μ M. When the cells were pretreated with TDGA, the incorporation process of either radioactive fatty acid into triglycerides was dose-dependently suppressed. Radioactive fatty acid incorporation into phosphatidylcholine was significantly decreased in cells treated with TDGA. In contrast, phosphatidylethanolamine reacylation was essentially not affected by the CpT inhibitor. Similar results on the fatty acid incorporation into triglycerides and phospholipids were observed with neurons treated with palmitoyl- dl - aminocarnitine (PAC), a reversible CPT inhibitor, which does not consume free CoA. These effects do not seem to be the result of an inhibitory activity toward one of the steps involved in the acylation-deacylation process of triglycerides or phospholipids, as cellular lysates from TDGA-treated cells or lysates containing PAC incorporated radioactive fatty acids at rates comparable to controls. Our results suggest that CRT may be an important partner in the pathway of phospholipid and triglyceride fatty acid turnover in neurons.  相似文献   

14.
Fatty acid specificity of acyl-CoA synthetase in rat glomeruli   总被引:1,自引:0,他引:1  
The fatty acid specificity of acyl-CoA synthetase in rat glomeruli for physiologically and pathologically important long-chain fatty acids was studied. The apparent Michaelis constants (Km) for substrate fatty acids increased in the order, linolenic less than linoleic less than eicosapentaenoic less than arachidonic less than oleic less than palmitic acid. The maximum velocities with these fatty acids decreased in the order, oleic greater than linoleic greater than palmitic (approximately equal to) linolenic greater than arachidonic greater than eicosapentaenoic acid. The syntheses of radioactive arachidonyl-CoA and palmitoyl-CoA from radioactive arachidonic and palmitic acid, respectively, were both inhibited by all fatty acids mentioned above including the substrate fatty acids, their inhibitory effects being inversely correlated with their apparent Km values. These results suggest that the enzyme in glomeruli has a unique specificity for fatty acids and that there is no arachidonic acid-specific acyl-CoA synthetase in glomeruli. The possible contribution of the glomerular enzyme with this specificity to the abnormal fatty acid levels in diabetic animals is discussed.  相似文献   

15.
A simple, direct and accurate method for the determination of concentration and enrichment of free fatty acids (FFAs) in human plasma was developed. The validation and comparison to a conventional method are reported. Three amide derivatives, dimethyl, diethyl and pyrrolidide, were investigated in order to achieve optimal resolution of the individual fatty acids. This method involves the use of dimethylamine/Deoxo-Fluor to derivatize plasma free fatty acids to their dimethylamides. This derivatization method is very mild and efficient, and is selective only towards FFAs so that no separation from a total lipid extract is required. The direct method gave lower concentrations for palmitic acid and stearic acid and increased concentrations for oleic acid and linoleic acid in plasma as compared to methyl ester derivative after thin-layer chromatography. The [(13)C]palmitate isotope enrichment measured using direct method was significantly higher than that observed with the BF(3)/MeOH-TLC method. The present method provided accurate and precise measures of concentration as well as enrichment when analyzed with gas chromatography combustion-isotope ratio-mass spectrometry.  相似文献   

16.
This investigation was carried out to develop methods for a reverse-phase, high-performance liquid chromatography analysis of the monocarboxylic and dicarboxylic acids produced by permanganate-periodate oxidation of monoenoic fatty acids. Oxidation reactions were performed using [U-14C]oleic acid and [U-14C]oleic acid methyl ester in order to measure reaction yields and product distributions. The 14C-labeled oxidation products consisted of nearly equal amounts of monocarboxylic and dicarboxylic acid (or dicarboxylic acid monomethyl ester), with few side products (yield greater than 98%). Conversion of the carboxylic acids to phenacyl esters proceeded to completion. HPLC of carboxylic acid phenacyl esters was performed using a C18 column with a linear solvent gradient beginning with acetonitrile/water (1/1) and ending with 100% acetonitrile. Excellent resolution was achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid phenacyl esters. Resolution was also achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid monomethyl, monophenacyl esters. The resolution obtained by HPLC demonstrates that, for a wide range of monoenoic fatty acids, both products of a permanganate-periodate oxidation can be identified on a single chromatogram. Free fatty acids and fatty acid methyl esters were analyzed with equal success. Neither the oxidation nor the esterification reaction caused detectable hydrolysis of methyl ester. The method is illustrated for free acids and methyl esters of 14:1 (cis-9), 16:1 (cis-9), 18:1 (cis-6), 18:1 (cis-9), and 18:1 (cis-11).  相似文献   

17.
Phospholipid acyl turnover was assessed in mouse peritoneal exudate cells which consisted primarily of macrophages. The cells were incubated for up to 5 h in media containing 40% H218O, and uptake of 18O into ester carbonyls of phospholipids was determined by gas chromatography-mass spectrometry of hydrogenated methyl esters. The uptake was highest in choline phospholipids and phosphatidylinositol, less in ethanolamine phospholipids, and much less in phosphatidylserine. Acyl groups at the sn-1 and sn-2 positions of diacyl glycerophospholipids, including arachidonic and other long-chain polyunsaturated fatty acids, acquired 18O at about the same rate. Acyl groups of alkylacyl glycerophosphocholine exhibited lower rates of 18O uptake, and acyl groups of ethanolamine plasmalogens (alkenylacyl glycerophosphoethanolamines) acquired only minimal amounts of 18O within 5 h, indicating a low average acyl turnover via free fatty acids. Pulse experiments with exogenous 3H-labeled arachidonic acid supported the concept that acylation of alkenyl glycerophosphoethanolamine occurs by acyl transfer from other phospholipids rather than via free fatty acids and acyl-CoA. The 18O content of intracellular free fatty acids increased gradually over a 5-h period, whereas in extracellular free fatty acids it reached maximal 18O levels within the first hour. Arachidonate and other long-chain polyunsaturated fatty acids were found to participate readily in deacylation-reacylation reactions but were present only in trace amounts in the free fatty acid pools inside and outside the cells. We conclude that acyl turnover of macrophage phospholipids through hydrolysis and reacylation is rapid but tightly controlled so that appreciable concentrations of free arachidonic acid do not occur.  相似文献   

18.
Primary cultures of adult rat hepatocytes were used to compare the uptake and esterification of essential polyunsaturated fatty acids (18:2, 20:3 and 20:4 of the n-6 series) with those of palmitic and oleic acids. The uptake of unesterified fatty acids was linearly related to the free fatty acid/albumin molar ratio for 14 h and did not depend on the unbound free fatty acid level. Whatever the initial free fatty acid/albumin molar ratio, it dropped to 0.5 +/- 0.1 mM after 14 h, thus showing that hepatocytes have a high capacity for clearing free fatty acids from the medium at high free fatty acid/albumin molar ratios. The free fatty acid uptake become saturable when the free fatty acid and albumin concentrations were raised and the free fatty acid/albumin ratio remained constant. This strongly suggests that albumin-hepatocyte interaction mediates free fatty acid uptake. This uptake was identical whatever the fatty acid tested and did not depend on the relative amounts of fatty acids when they were added simultaneously. Triacylglycerol accumulation and synthesis, monitored by labelled fatty acids, were related to the free fatty acid/albumin molar ratio and exhibited no specificity for the series of fatty acids tested. Triacylglycerols were enriched in all the fatty acids tested by up to 60%, and fatty acid incorporation into diacylglycerols and triacylglycerols reflected the free fatty acid composition of the medium. By contrast, neither the level nor the synthesis of phospholipids varied with free fatty acid/albumin, but the rate of phospholipid turnover depended on the fatty acids tested. Accumulation of these acids was smaller in phospholipids than in triacylglycerols. When linoleic and arachidonic acids were added together, phospholipids (especially phosphatidylethanolamine and phosphatidylinositol) were more enriched in arachidonic acid than triacylglycerols. This might be due to the specificity for fatty acid of the enzymes involved in phospholipid metabolism.  相似文献   

19.
A fatty acid auxotroph of Candida albicans 6406, designated A' 44 and originally isolated as an oleic acid requiring strain, has been shown to be a delta9 desaturase mutant. Although lacking this step in fatty acid biosynthesis, it appears to retain the ability to desaturate monounsaturated fatty acids. The polyene sensitivity of the organism grown on different fatty acid supplements varied between 0-08 +/- 0-02 and 1-20 +/- 0-30 microgram amphotericin B methyl ester ml-1 for exponentially growing cells. In spite of this variation, the sterol composition remained fairly constant, the major differences lying in fatty acid composition. Stationary-phase cells were more resistant to amphotericin B methyl ester, although again this change was not associated with changes in sterol content. The organism was most resistant when grown in the presence of oleic or linoleic acid. Protoplasts derived from resistant organisms grown on these two fatty acids were also resistant, indicating that the structure of the cell wall was less important than that of the plasma membrane in determining polyene sensitivity under these conditions.  相似文献   

20.
The rate of incorporation of oleic acid into isolated brush-border membranes was found to be considerably faster than methyl oleate incorporation under similar experimental conditions. The effects of fatty acids and methyl oleate incorporation on Ca2+ uptake and fluidity were monitored. Whereas treatment with 0.01-0.05 mM oleic acid corresponding to incorporations smaller than 90 nmol/mg protein enhanced Ca2+ transport, exposures to higher concentrations of this fatty acid corresponding to incorporations larger than 150 nmol/mg protein, decreased uptake of this cation. On the other hand, treatment with 0.01-0.2 mM methyl oleate corresponding to incorporations of up to 220 nmol/mg protein had only a stimulatory effect on the Ca2+ uptake. Oleic acid, linoleic acid and methyl oleate decreased the fluorescence anisotropy of membranes labelled with diphenylhexatriene in a dose-dependent manner. In contrast, palmitic acid had little or no effect on the diphenylhexatriene-reportable order of the membrane within the range of concentrations used. Monitored as a function of temperature, the anisotropy values showed a gradual melting for both the control and lipid-treated membranes. The results support the concept that saturated and cis-unsaturated fatty acids dissolve in different lipid domains and this in itself appears to be an important factor defining whether the biological function of the membrane is affected by the uptake. Incorporation of cis-unsaturated fatty acids in domains harboring the Ca2+ uptake process increases Ca2+ uptake in concert with increased diphenylhexatriene-monitored fluidity. However, when concentrations of such fatty acids in these domains become sufficiently great, the presence of a largely increased number of free carboxyl groups at the membrane surface causes inhibition of Ca2+ uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号