首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internal motions at specific locations through yeast phenylalanine tRNA were measured by using nucleic acid biosynthetically enriched in 13C at modified base methyl groups. Carbon NMR spectra of isotopically enriched tRNA(Phe) reveal 12 individual peaks for 13 of the 14 methyl groups known to be present. The two methyls of N2,N2-dimethylguanosine (m22G-26) have indistinguishable resonances, whereas the fourteenth methyl bound to ring carbon-11 of the hypermodified nucleoside 3' adjacent to the anticodon, wyosine (Y-37), does not come from the [methyl-13C]methionine substrate. Assignments to individual nucleosides within the tRNA were made on the basis of chemical shifts of the mononucleosides [Agris, P. F., Kovacs, S. A. H., Smith, C., Kopper, R. A., & Schmidt, P. G. (1983) Biochemistry 22, 1402-1408; Smith, C., Schmidt, P. G., Petsch, J., & Agris, P. F. (1985) Biochemistry 24, 1434-1440] and correlation of 13C resonances with proton NMR chemical shifts via two-dimensional heteronuclear proton-carbon correlation spectroscopy [Agris, P. F., Sierzputowska-Gracz, H., & Smith, C. (1986) Biochemistry 25, 5126-5131]. Values of 13C longitudinal relaxation (T1) and the nuclear Overhauser enhancements (NOE) were determined at 22.5, 75.5, and 118 MHz for tRNA(Phe) in a physiological buffer solution with 10 mM MgCl2, at 22 degrees C. These data were used to extract two physical parameters that define the system with regard to fast internal motion: the generalized order parameters (S2) and effective correlation times (tau e) for internal motion of the C-H internuclear vectors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The enrichment of tRNA at specific sites with carbon-13 has been accomplished in vivo using a mutant of Escherichia coli. A relaxed strain of E. coli auxotrophic for methionine was grown in a specifically defined medium supplemented with either [14C] or [13C]-methyl labeled methionine. Cells were collected at the end of the log-phase of growth and tRNA was extracted. Analysis of the radioactivity of the [14C]-labeled tRNA established an incorporation ratio of three labeled carbons per tRNA molecule. Incorporation of the [14C]-label in vivo was confined to the methylation of nucleotides as determined by thin layer chromatography of nucleotides resulting from a ribonuclease digestion of [14C]-labeled tRNA. The carbon-13 NMR spectrum of [13C]-enriched tRNA indicated a similar degree of incorporation into the methylated nucleotides by the substantial enhancement of [13C]-methyl NMR signals only. Assignment of signals has been made for the methyl groups of ribothymidine and N7-methylguanosine in E. coli tRNA.  相似文献   

4.
Escherichia coli C6 rel met cys was cultured in a stringently defined minimal medium containing 13C-enriched metabolites in order to (1) achieve maximal 13C isotopic enrichment of tRNA; and (2) produce site specific but natural, non-perturbing NMR probes of tRNA structure and function. Growth conditions were manipulated to achieve optimal culture growth concomitant with maximal in vivo incorporation of various 13C-enriched nucleic acid precursors, including L-[methyl-13C] methionine, [2-(13)C] adenine, and [2-(13)C] uracil. Effective blockage of purine biosynthesis de novo was accomplished with the addition of the antimetabolite 6-mercaptopurine to the growth medium. Transfer RNAs specifically 13C-enriched in all methyl groups (57 atom %), C2 of adenine (60 atom %), and C2 of uracil (82 atom %) and C2 of cytosine (73 atom %) have been produced.  相似文献   

5.
6.
《Insect Biochemistry》1990,20(2):149-156
The precursors and directionality of synthesis of the methyl branched cuticular hydrocarbons and the female contact sex pheromone, 3,11-dimethyl-2-nonacosanone, of the German cockroach, Blattella germanica, were investigated by radiotracer and carbon-13 NMR techniques. The amino acids [G-3H]valine, [4,5-3H]isoleucine and [3,4-14C2]methionine labeled the hydrocarbon fraction in a manner indicating that the carbon skeletons of all three amino acids serve as the methyl branch group donor. The incorporation of [1,4-14C2]- and [2,3-14C2]succinates into the hydrocarbon and acylglycerol/polar lipid fractions indicated that succinate also served as a precursor to methylmalonyl-CoA. Carbon-13 NMR analyses showed that [1-13C]propionate labeled the carbon adjacent to the tertiary carbon, and, for the 3,x-dimethylalkanes, that carbon-4 and not carbon-2 was enriched. [1-13C]Acetate labeled carbon-2 of these hydrocarbons. This indicates that the methyl branching groups of the 3,x-dimethylalkanes were inserted early in the chain elongation process. [3,4,5-13C3]Valine labeled the methyl, tertiary and carbon adjacent to the tertiary carbon of the methyl branched alkanes. Thus, the methyl branched hydrocarbon was formed by the insertion of methylmalonyl units derived from propionate, isoleucine, valine, methionine and succinate early in chain elongation.  相似文献   

7.
M Kainosho  H Nagao  T Tsuji 《Biochemistry》1987,26(4):1068-1075
The carbonyl carbon NMR signals of the Phe residues in Streptomyces subtilisin inhibitor (SSI) were selectively observed for [F]SSI, in which all phenylalanines were uniformly labeled with [1-13C]Phe. The three enhanced resonances in the spectrum of [F]SSI were unambiguously assigned to the specific sites in the amino acid sequence by means of 15N,13C double-labeling techniques. Namely, the resonances at 174.9 and 172.6 ppm (in D2O, pH 7.3, 50 degrees C) showed the satellite peaks due to 13C-15N spin coupling in the spectra of [F,GS]SSI and [F,A]SSI, in which Ser/Gly and Ala residues were labeled with [15N]Gly/Ser and [15N]Ala, respectively, together with [1-13C]Phe. The carbonyl groups of Phe-97 and Phe-111 are involved in peptide bonds with the amino nitrogens of Ser-98 and Ala-112, respectively. These results clearly indicate that the signals at 174.5 and 172.6 ppm are due to Phe-97 and Phe-111, respectively. The signal at the lowest field (177.1 ppm) was thus assigned to the carboxyl carbon of the C-terminal Phe-113. The lifetimes of the amide hydrogens of the three Phe residues and their C-terminal-side neighbors (Ser-98 and Ala-112) were investigated by using the effect of deuterium-hydrogen exchange of amide on the line shapes (DEALS) for the Phe carbonyl carbon resonances. In this method, the NMR spectra of [F]SSI dissolved in 50% D2O (pH 7.3) were measured at various temperatures, and the line shape changes caused by deuteriation isotope shifts were analyzed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
P R Rosevear 《Biochemistry》1988,27(20):7931-7939
A procedure for the rapid purification of a truncated form of the Escherichia coli methionyl-tRNA synthetase has been developed. With this procedure, final yields of approximately 3 mg of truncated methionyl-tRNA synthetase per gram of cells, carrying the plasmid encoding the gene for the truncated synthetase [Barker, D.G., Ebel, J.-P., Jakes, R., & Bruton, C.J. (1982) Eur. J. Biochem. 127, 449], can be obtained. The catalytic properties of the purified truncated synthetase were found to be identical with those of the native dimeric and trypsin-modified methionyl-tRNA synthetases. A rapid procedure for obtaining milligram quantities of the enzyme is necessary before the efficient incorporation of stable isotopes into the synthetase becomes practical for physical studies. With this procedure, truncated methionyl-tRNA synthetase labeled with [methyl-13C]methionine was purified from an Escherichia coli strain auxotrophic for methionine and containing the plasmid encoding the gene for the truncated methionyl-tRNA synthetase. Both carbon-13 and proton observe-heteronuclear detect NMR experiments were used to observe the 13C-enriched methyl resonances of the 17 methionine residues in the truncated synthetase. In the absence of ligands, 13 of the 17 methionine residues could be resolved by carbon-13 NMR. Titration of the synthetase, monitoring the chemical shifts of resonances B and M (Figure 3), with a number of amino acid ligands and ATP yielded dissociation constants consistent with those derived from binding and kinetic data, indicating active site binding of the ligands under the conditions of the NMR experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Wyosine and its derivatives, such as wybutosine, found in eukaryotic and archaeal tRNAs, are tricyclic hypermodified nucleosides. In eukaryotes, wybutosine exists exclusively in position 37, 3'-adjacent to the anticodon, of tRNA(Phe), where it ensures correct translation by stabilizing the codon-anticodon base-pairing during the ribosomal decoding process. Recent studies revealed that the wyosine biosynthetic pathway consists of multistep enzymatic reactions starting from a guanosine residue. Among these steps, TYW1 catalyzes the second step to form the tricyclic ring structure, by cyclizing N(1)-methylguanosine. In this study, we solved the crystal structure of TYW1 from Methanocaldococcus jannaschii at 2.4 A resolution. TYW1 assumes an incomplete TIM barrel with (alpha/beta)(6) topology, which closely resembles the reported structures of radical SAM enzymes. Hence, TYW1 was considered to catalyze the cyclization reaction by utilizing the radical intermediate. Comparison with other radical SAM enzymes allowed us to build a model structure complexed with S-adenosylmethionine and two [4Fe-4S] clusters. Mutational analyses in yeast supported the validity of this complex model structure, which provides a structural insight into the radical reaction involving two [4Fe-4S] clusters to create a complex tricyclic base.  相似文献   

10.
The 1H, 13C, and 15N NMR spectra of neutral and protonated forms of the nucleosides 1-methyladenosine (m1A), 7-methylguanosine (m7G) and ethenoadenosine (EA), as a model compound, have been analyzed in order to assign the site of protonation in m1A and m7G. Protonation of these nucleosides occurs in the pyrimidine ring of m1A and EA and in the imidazole ring of m7G, with the charge being distributed rather than localized. Structural differences for both m1A and m7G were observed in solution and compared with those existing in the crystal state of monomers as well as in tRNA where these nucleosides occur quite often. The protonated nucleoside structures in solution compared favorably in sugar pucker and glycosidic bond conformations with x-ray crystallographic data. Methyl group carbon chemical shifts of the protonated mononucleosides corresponded to those of the methyls of the respective nucleosides in native tRNA structures. Therefore, the tRNA methyl group carbon chemical shifts are indicative of fully protonated nucleosides in the native, three dimensional structure of the nucleic acid.  相似文献   

11.
Maturation of a hypermodified nucleoside in transfer RNA.   总被引:10,自引:2,他引:8       下载免费PDF全文
E. coli C6 rel- met- cys- was cultured in a fully supplemented medium and in media lacking cysteine or methionine. tRNA isolated from the three cultures containted, respectively, a normal complement of modified nucleosides; a deficiency in thiolated nucleosides and a deficiency in methylated nucleosides. Both sulfur-deficient tRNA and methyl-deficient tRNA contained large amounts of N-6- (delta-2-isopentenyl) adenosine and small amounts of the 2-methylthio derivative. Methyl-deficient tRNA contained, in addition a large amount of a cytokinin active, differently modified nucleoside that is believed to be a sulfur derivative of N6-(delta-2-isopentenyl) adenosine. The structure of this compound is unknown. When methly-deficient tRNA and the precusor the tRNA-Tyr su3-+ A25 were enzymatically methylated in vitro, methyl groups were incorporated into derivatives of isopentenyladenosine. These results indicate that the biosynthesis of the 2-methylthio derivative of isopentenyladenosine may occur in a sequential manner, i.e., thiolation of isopentenyladenosine followed by methylation.  相似文献   

12.
BackgroundThe structure-function relationships for large protein complexes at the atomic level would be comprehensively understood, if hitherto unexplored aromatic ring NMR signals became accessible in addition to the currently used backbone amide and side-chain methyl signals.MethodsThe 82 kDa malate synthase G (MSG) proteins, selectively labeled with Trp and Phe bearing relaxation optimized isotope-labeled rings, were prepared to investigate the optimal conditions for obtaining the aromatic TROSY spectra.ResultsThe MSG proteins, selectively labeled with either [δ1132]-SAIL Trp or ζ-SAIL Phe, provided well-separated, narrow TROSY signals for the 12 Trp and 19 Phe residues in MSG. The signals were assigned sequence-specifically, using the set of single amino acid substitution mutants. The site-specific substitution of each Phe with Tyr or Leu induced substantial chemical shifts for the other aromatic ring signals, allowing us to identify the aromatic clusters in MSG, which were comparable to the structural domains proposed previously.ConclusionsWe demonstrated that the aromatic ring 13CH pairs without directly bonded 13C and adjacent 1H spins provide surprisingly narrow TROSY signals, if the rings are surrounded by fully deuterated amino acids. The observed signals can be readily assigned by either the single amino acid substitution or the NOEs between the aromatic and methyl protons, if the methyl assignments are available.General significanceThe method described here should be generally applicable for difficult targets, such as proteins in lipid bilayers or possibly in living cells, thus providing unprecedented opportunities to use these new probes in structural biology.  相似文献   

13.
Transfer RNAs from all organisms contain many modified nucleosides. Their vastly different chemical structures, their presence in different tRNAs, their occurrence in different locations in tRNA and their influence on different reactions in which tRNA participates suggest that each modified nucleoside may have its own specific function. However, since the frequency of frameshifting in several different mutants [mnmA, mnmE, tgt, truA (hisT), trmD, miaA, miaB and miaE] defective in tRNA modification was higher compared with the corresponding wild-type controls, these modifications have a common function: they all improve reading frame maintenance. Frameshifting occurs by peptidyl-tRNA slippage, which is influenced by the hypomodified tRNA in two ways: (i) a hypomodified tRNA in the ternary complex may decrease the rate by which the complex is recruited to the A-site and thereby increasing peptidyl-tRNA slippage; or (ii) a hypomodified peptidyl-tRNA may be more prone to slip than its fully modified counterpart. We propose that the improvement of reading frame maintenance has been and is the major selective factor for the emergence of new modified nucleosides.  相似文献   

14.
Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNA(Phe) anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASL(Phe)). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNA(Phe) anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2'O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNA(Phe). Thus, effective ribosome binding of tRNA(Phe) is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.  相似文献   

15.
1. Cyclohexylpuromycin, an anlogue of puromycin in which a cyclohexane ring replaces the aromatic benzene ring of the L-phenylalanyl moeity of the nucleoside., has been synthesized and examined for its ability to release N-acetylphenylalanine from tRNA attached to rat liver ribosomes. 2.dl-Cyclohexylpuromycin was active in reacting with N-[3H]acetylphenylalanyl-tRNA on rat liver ribosomes to form N-E13H]lacetylphenylalanycyclohexypuromycin. 3. The reaction product N-acetylphenylalanylcyclohexylpuromycin and the corresponding analogue N-acetylphenylalanylpuromycin were chemically synthesized for evaluation of the structure of the released N-acetylphenylalanyl-containing material. 4. The results obtained suggest that the model of Raacke (1971) for purmycin reactivity needs further examination with regard to the role played by the aromatic ring system of the Lphenylalanyl moiety of the nucleoside  相似文献   

16.
J T Kealey  D V Santi 《Biochemistry》1991,30(40):9724-9728
A covalent complex between tRNA (m5U54)methyltransferase, 5-fluorouridine tRNA(Phe), and S-adenosyl-L-[methyl-3H]methionine was formed in vitro and purified. Previously, it was shown that in this complex the 6-position of fluorouridine-54 is covalently linked to a catalytic nucleophile and the 5-position is bound to the transferred methyl group of AdoMet [Santi, D. V., & Hardy, L. W. (1987) Biochemistry 26, 8599-8606]. Proteolysis of the complex generated a [3H]methyl-FUtRNA-bound peptide, which was purified by 7 M urea-15% polyacrylamide gel electrophoresis. The peptide component of the complex was sequenced by gas-phase Edman degradation and found to contain two cysteines. The tritium was shown to be associated with Cys 324 of the methyltransferase, which unequivocally identifies this residue as the catalytic nucleophile.  相似文献   

17.
Methyl carbon-13 NMR spectra of purified tRNA species are presented for the first time. In addition, these spectra of tRNA species specific for phenylalanine, tyrosine, and cysteine exhibited the first resolution of single methyl carbon resonances. Carbon-13 enriched methyl groups of ribothymidine (T) and 7-methylguanosine (m7G) and the methylthio group of 2-methylthio-N6-(delta2-isopentenyl) adenosine (ms2i6A) were resolved. The T methyl signal of tRNAPhe shifted from 12.3 ppm at 45 degrees in the absence of added Mg2+ to 11.1 ppm at 30 degrees in the presence of 10mM MgCl2. The same change in conditions led to a 0.4 ppm shift of the m7G methyl signal in the opposite direction. The relative ease in obtainment of single carbon resonances of purified tRNA species, and display of the sensitivity of their chemical shifts to changes in local structure, are requisite criteria for 13C-NMR to be a useful technique in probing tRNA conformation and its changes during interaction with proteins and other nucleic acids.  相似文献   

18.
Iida K  Kajiwara M 《The FEBS journal》2007,274(19):5090-5095
The metabolic pathways leading from l-[2-13C]aspartic acid, [2-13C]glycine and l-[methyl-13C]methionine to vitamin B12 were investigated, focusing on the biosynthetic pathways leading to the aminopropanol moiety of vitamin B12 and on the role of the Shemin pathway leading to delta-aminolevulinic acid (a biosynthetic intermediate of tetrapyrrole), by means of feeding experiments with Propionibacterium shermanii in combination with 13C-NMR spectroscopy. The 13C-methylene carbons of l-[2-(13)C]aspartic acid, which is transformed to [2-13C]glycine via l-[2-13C]threonine, and [2-13C]glycine added to the culture medium served mainly to enrich the seven methyl carbons of the corrin ring through C-methylation by S-adenosyl-l-[methyl-13C]methionine derived from catabolically generated l-[methyl-13C]methionine in the presence of tetrahydrofolic acid. The results indicate that the catabolism of these amino acids predominates over pathways leading to (2R)-1-amino-2-propanol or delta-aminolevulinic acid in P. shermanii. Feeding of l-[methyl-13C]methionine efficiently enriched all seven methyl carbons. In the cases of [2-13C]glycine and l-[methyl-13C]methionine, the 13C-enrichment ratio of the methyl carbon at C-25 (the site of the first C-methylation) was less than those of the other six methyl carbons, probably due to the influence of endogenous d-glucose in P. shermanii. The almost identical 13C-enrichment ratios of the other six methyl carbons indicated that these C-methylations during vitamin B12 biosynthesis were completed before the amino acids were completely consumed. However, in the case of l-[2-13C]aspartic acid, the 13C-enrichment ratios of five methyl carbons were low and similar, whereas the last two sites of C-methylation (C-53 and C-35) were not labeled, presumably because of complete consumption of the smaller amount of added label. The ratios of 13C-incorporation into the seven methyl carbons are influenced by the conditions of amino acid feeding experiments in a manner that is dependent upon the order of C-methylation in the corrin ring of vitamin B12.  相似文献   

19.
In this paper we describe carbon-13 nuclear magnetic resonance results on 13C-enriched purified transfer RNAI(VAL) from from E. coli SO-187, a uracil requiring auxotroph. The organism was grown on uracil 90% 13C-enriched at the carbonyl C4 position. Transfer RNAI(Val) was purified from bulk tRNA by sequential chromatography on columns of BD cellulose, DEAE-Sephadex A-50 and reverse gradient sepharose 4B. Dihydrouridine, 4-thiouridine, and uridine 5-oxyacetic acid located at discrete positions in the polymer backbone were tentatively assigned in the highly resolved 25 MHz 13C-spectra. Chemical shift versus temperature plots reveal differential thermal perturbation of the ordered solution structure, evident in the large dispersion (ca 3-4 ppm) of the uridine C4 resonances. Over the range 26-68 degrees C, V in the anticodon displays the largest downfield shift. Whereas several uridine residues rapidly shift downfield between 50-68 degrees, one moves upfield beginning at 37 degrees. The results are qualitatively compared with proton NMR analysis of the three dimensional structure.  相似文献   

20.
Phenylalanine tRNA from Mycoplasma sp. (Kid) was purified and characterized. The tRNA can be aminoacylated by phenylalanyl-tRNA synthetase from both Mycoplasma and E. coli. In a tRNA-dependent cell-free E. coli amino acid incorporating system programmed with poly U pure Mycoplasma tRNA(Phe) was fully active in promoting phenylalanine incorporation, even in direct competition with homologous E. coli tRNA(Phe). Since the Mycoplasma tRNA lacks isopentenyladenosine, or any related hypermodified nucleoside, it appears that the presence of such nucleosides in tRNA is not an absolute requirement for protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号