首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sanchez CP  McLean JE  Stein W  Lanzer M 《Biochemistry》2004,43(51):16365-16373
The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum remains controversial. By investigating the kinetics of chloroquine accumulation under varying-trans conditions, we recently presented evidence for a saturable and energy-dependent chloroquine efflux system present in chloroquine resistant P. falciparum strains. Here, we further characterize the putative chloroquine efflux system by investigating its substrate specificity using a broad range of different antimalarial drugs. Our data show that preloading cells with amodiaquine, primaquine, quinacrine, quinine, and quinidine stimulates labeled chloroquine accumulation under varying-trans conditions, while mefloquine, halofantrine, artemisinin, and pyrimethamine do not induce this effect. In the reverse of the varying-trans procedure, we show that preloaded cold chloroquine can stimulate quinine accumulation. On the basis of these findings, we propose that the putative chloroquine efflux system is capable of transporting, in addition to chloroquine, structurally related quinoline and methoxyacridine antimalarial drugs. Verapamil and the calcium/calmodulin antagonist W7 abrogate stimulated chloroquine accumulation and energy-dependent chloroquine extrusion. Our data are consistent with a substrate specific and inhibitible drug efflux system being present in chloroquine resistant P. falciparum strains.  相似文献   

2.
An assay was developed measuring the disruption of rosettes between Plasmodium falciparuminfected (trophozoites) and uninfected erythrocytes by the antimalarial drugs quinine, artemisinin mefloquine, primaquine, pyrimethamine, chloroquine and proguanil. At 4 hr incubation rosettes were disrupted by all the drugs in a dose dependent manner. Artemisinin and quinine were the most effective anti-malarials at disrupting rosettes at their therapeutic concentrations with South African RSA 14, 15, 17 and The Gambian FCR-3 P. falciparum strains. The least effective drugs were proguanil and chloroquine. A combination of artemisinin and mefloquine was more effective than each drug alone. The combinations of pyrimethamine or primaquine, with quinine disrupted more rosettes than quinine alone. Quinine may be an effective drug in the treatment of severe malaria because the drug efficiently reduces the number of rosettes.  相似文献   

3.
Chloroquine has been used in Madagascar since 1945 and remains the first-line treatment for uncomplicated cases of malaria. Low-grades of resistance type R1 and R2 have been reported. Thus, in vitro tests were performed in order to monitor the drug sensitivity of Plasmodium falciparum from different study sites, with the aim of identifying alternatives to chloroquine. Chloroquine IC50 values ranged from 0.2 nM to 283.4 nM (n = 190, mean IC50 = 52.6 nM; 95% CI = 46.1-59.1 nM). Fifteen isolates (7.9%) were chloroquine-resistant. One mefloquine-resistant isolate was detected (1/139). The test isolates were sensitive to amodiaquine (n = 118), quinine (n = 212), pyrimethamine (n = 86) and cycloguanil (n = 79). The median IC50 for amodiaquine was 12.3 nM (mean IC50 = 15.3 nM, 95% CI = 13.3-17.3 nM). Amodiaquine was 3.4 times as active as chloroquine in vitro and 7 times as active as quinine against P. falciparum. These results indicate that amodiaquine may be a potent alternative to chloroquine in Madagascar. There was positive correlation between tested quinoline-containing drugs activities, which suggests in vitro cross-susceptibility.  相似文献   

4.
The antimalarial activity of benzo[a]phenazines synthesized from 1,2-naphthoquinone, lapachol, beta-lapachone and several derivatives have been tested against Plasmodium falciparum in vitro using isolates of parasites with various susceptibilities to chloroquine and/or mefloquine. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]-hipoxanthine in comparison to controls with no drugs, always testing in parallel chloroquine, a standard antimalarial. Among seven benzophenazines tested, four had significant in vitro activities; important, the parasites resistant to chloroquine were more susceptible to the active phenazines in vitro. The doses of phenazines causing 50% inhibition of parasite growth varied from 1.67 to 9.44 microM. The two most active ones were also tested in vivo against Plasmodium berghei in mice, in parallel with lapachol and beta-lapachone. The 3-sulfonic acid-beta-lapachone-derived phenazine was the most active causing up to 98% inhibition of parasitaemia in long term treatment (7 doses) subcutaneously, whereas the phenazine from 3-bromo-beta-lapachone was inactive. Thus, these simple phenazines, containing polar (-Br,-I) and ionizable (-SO(3)H, -OH) groups, easily synthesized from cheap, natural or synthetic precursors (lapachol and beta-lapachone), at rather low cost, provide prototypes for development of new antimalarials aiming the chloroquine resistant parasites.  相似文献   

5.
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.  相似文献   

6.
In the scenario of drug-resistant Plasmodium falciparum malaria combination therapy represents an effective approach. Artemisinin and its derivatives are of special interest because they represent the most effective group of compounds against multidrug-resistant malaria with a rapid onset of action and a short half-life. Interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine were therefore investigated against three strains of P. falciparum using a 48-h in vitro culture assay. Two of the strains were chloroquine sensitive and one was partially chloroquine resistant. Observed effective concentrations (O) of the combined compounds at different concentration ratios were calculated for different degrees of inhibition (EC50, EC90, EC99) and compared to expected calculated effective concentrations (E) using a probit method. Synergism with mean O/E EC90 values of 0.25 and 0.8 were found with the combination of artemisinin and the two Mannich bases, amodiaquine and pyronaridine, respectively, whereas chloroquine showed addition with a mean value of 1.2. Although both amodiaquine and chloroquine are 4-aminoquinolines, their interaction with artemisinin appears to be different. The combination of artemisinin with amodiaquine represents an important option for the treatment of falciparum malaria.  相似文献   

7.
The dissemination of mutant and resistant strains of Plasmodium falciparum makes a considerable contribution to the spread of drug-resistant malaria. Populations around harbours and airports could be particularly exposed to Plasmodium isolates introduced with imported cases of malaria. The use of chloroquine as well as the use of and sulfadoxine/pyrimethamine is currently an effective method for treating uncomplicated cases of malaria in Madagascar. As part of a monitoring programme, in vitro methods were used to assess the sensitivity of P. falciparum isolates in two coastal towns in Madagascar: Mahajanga on the west coast and Toamasina on the east coast. All of the isolates from both sites were sensitive to amodiaquine, quinine, pyrimethamine and cycloguanil. All of the isolates from Mahajanga were sensitive to chloroquine (n = 25; mean IC50 = 22.6 nM, 95% confidence interval: 16.8-28.7 nM), whereas three of the isolates from Toamasina were resistant to chloroquine (n = 18; mean IC50 = 66.3 nM; 95% confidence interval: 42.6-90 nM). The frequency of the Pfcrt Thr-76 and the dhfr Asn-108 mutations was estimated by PCR/RFLP. The 43 P. falciparum isolates examined, including the three in vitro chloroquine-resistant isolates from Toamasina were all wild-type (Lys-76). Phenotyping and genotyping studies suggested that the prevalence of chloroquine- and pyrimethamine-resistant isolates and of mutant strains of P. falciparum is very low. These results showed that in vitro test and genotyping of resistance markers approaches could be successfully used to monitor the emergence of drug-resistant malaria and to try to alleviate the lack of medical teams able to carry out in vivo test. The possible hazard/risk associated with imported cases of malaria is discussed.  相似文献   

8.
ABSTRACT: BACKGROUND: Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand. METHODS: Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization's microtest (mark III) (between 1994 and 2002) and the histidine-rich protein-2 (HRP2)-based enzyme-linked immunosorbent assay (in 2010). Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences. RESULTS: There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar. CONCLUSIONS: Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued surveillance in Thailand, along with increased collaboration and surveillance across the entire Greater Mekong sub-region, is clearly warranted.  相似文献   

9.
The effect of 16 alpha-acetoxy-26-hydroxycholest-4-ene-3,22-dione (SN-1) isolated from Solanum nudum Dunal (a Solanaceae traditionally used for treating fever in Colombia) on Plasmodium falciparum erythrocyte stages and its in vitro antiplasmodial activity when combined with the following conventional drugs was studied: chloroquine (CQ), amodiaquine (AQ), desethylamodiaquine (desethyl-AQ), quinine (QN), artemisinin (AR), atovaquone (ATV) and quinine (QN). It was found that SN-1 targeted trophozoites and had a synergistic effect when combined with CQ and QN; however, it had an antagonist effect when used with the other combinations.  相似文献   

10.
Plasmodium falciparum, the deadliest malarial parasite species, has developed resistance against nearly all man-made antimalarial drugs within the past century. However, quinine (QN), the first antimalarial drug, remains efficacious worldwide. Some chloroquine resistant (CQR) P. falciparum strains or isolates show mild cross resistance to QN, but many do not. Further optimization of QN may provide a well-tolerated therapy with improved activity versus CQR malaria. Thus, using the Heck reaction, we have pursued a structure-activity relationship study, including vinyl group modifications of QN. Certain derivatives show good antiplasmodial activity in QN-resistant and QN-sensitive strains, with lower IC(50) values relative to QN.  相似文献   

11.
Strains of Plasmodium berghei resistant to clindamycin or minocycline were selected by a procedure in which groups of infected mice were treated with increasing doses of drug during each of a series of subpassages. Groups of five mice, each infected by intravenous inoculation with 10 million parasitized erythrocytes, were treated orally with different doses of drug for four consecutive days beginning on the day of infection. Subpassages were routinely made by Day 7, using donor mice from the group that had been treated with the highest dose of drug that allowed for some development of parasitemia during the preceding passage. Drug doses were increased in each passage as dictated by the development of parasitemia during the previous treated passage.The rate of development of resistance to clindamycin or minocycline was much slower than to conventional antimalarials such as chloroquine, quinine, or pyrimethamine. P. berghei developed total resistance to the latter compounds in nine to 12 treated passages in mice over a period of 60 to 85 days. In contrast, development of total resistance to clindamycin required 42 treated passages over a period of 300 days. Total resistance to minocycline was not attained during 86 successive minocycline-treated passages in mice over a period of 600 days, but a sixfold increase in resistance to minocycline was observed.The clindamycin-resistant strain was normally sensitive to minocycline, chloroquine, quinine, and pyrimethamine. The strain partially resistant to minocycline was normally sensitive to clindamycin, chloroquine, quinine, and pyrimethamine. Resistance to clindamycin was stable during 51 drug-free passages in mice over a period of 1 year. Resistance to minocycline was unstable. During 16 drug-free passages in mice the strain reverted towards normal sensitivity to minocycline. Strains resistant to clindamycin or minocycline showed no difference in rate of development in mice as compared to the parent strain. Likewise, only minor morphological modifications were seen in Giemsa-stained blood smears between the two resistant strains and the parent strain.These results suggest that other species of malaria may develop resistance to clindamycin or minocycline. Should resistance to one of these compounds appear, however, it should not invalidate the use of the other in the treatment of malaria.  相似文献   

12.
The potencies and efficacies of 9 quinoline-containing anti-malarials including chloroquine, (bis)desethylchloroquine, SN6911, SN12108, amodiaquine, CN-2999-2K, primaquine, quinacrine, and quinine were examined in vitro against adult female Brugia pahangi. Parasite motility and lactate excretion were measured as indicators of drug effects. All of the agents tested showed time-dependent increases in potency over a 24-72-hr incubation period. SN12108 was the most potent at 72 hr, reducing motility by greater than or equal to 50% (IC50) at 1.0 x 10(-7) M. Chloroquine (IC50 2.3 x 10(-6) M), desethylchloroquine (IC50 7.0 x 10(-6) M), quinacrine (IC50 1.9 x 10(-6) M), and quinine (IC50 1.5 x 10(-5) M) were the least potent. All of the drugs caused time-dependent decreases in lactate excretion, except quinine; decreases were found to be dose dependent. A high correlation (r greater than 0.85) was seen between time-dependent effects on motility and lactate excretion. The effects of chloroquine (10 microM) on motility were also examined in female Acanthocheilonema viteae, Dirofilaria immitis, Onchocerca volvulus, and male Onchocerca gutturosa. Dirofilaria immitis was less sensitive to chloroquine than B. pahangi; A. viteae was equally sensitive. Species of Onchocerca were the most sensitive parasites studied. Adult O. gutturosa and O. volvulus were affected by 10 microM chloroquine within 4-6 hr; motility was reduced by 80% within 24 hr. Although the mechanism of anti-filarial activity of the quinoline-containing drugs is not known, their in vitro activity against a variety of adult filariae at clinically relevant concentrations, as well as differential sensitivity seen between the different filariae examined, warrants further study of these compounds.  相似文献   

13.
In this study, a series of 11 10-aminoethylether derivatives of artemisinin were synthesised and their antimalarial activity against both the chloroquine sensitive (D10) and resistant (Dd2) strains of Plasmodium falciparum was determined. The compounds were prepared by introducing aliphatic, alicyclic and aromatic amine groups with linkers of various chain lengths through an ethyl ether bridge at C-10 of artemisinin using conventional and microwave assisted syntheses, and their structures were confirmed by NMR and HRMS. All derivatives proved to be active against both strains of the parasite. The highest overall activity was displayed by the short chain aromatic derivative 8 (IC(50)=1.44nM), containing only one nitrogen atom, while long chain polyamine derivatives were found to have the lowest activity against both strains. An interesting correlation between the IC(50), pK(a) values and resistance index (RI) was found.  相似文献   

14.
Use of fast-acting blood schizontocidal drugs such as chloroqune, amodiaquine, mepacrine or quinine, is essential for the treatment of acute malaria infections. The spread of resistance in Plasmodium falciparum to chloroquine, the most useful of these drugs, has been a serious problem since the 1960s, and the resistant strains show various degrees of cross-resistance to other drugs. Design of replacement drugs requires knowledge of their modes of action and mechanisms of resistance. At present, there are two theories to explain the mode of action of chloroquine (Box 1). In this debate, Coy Fitch advances the hypothesis that chloroquine acts by delaying the sequestration of Ferriprotoporphyrin IX (FP) into malaria pigment, thereby allowing FP to exert its intrinsic cellular toxicity. In contrast, David Warhurst proposes a new 'Permease theory' suggesting that chloroquine is imported into the parasite cytoplasm on a membrane carrier (the permease) under the influence of a proton gradient; the drug would then interfere with lysosomal digestion of haemoglobin, thus starving the parasite of amino acids for protein synthesis.  相似文献   

15.
The emergence and spread of multidrug resistant Plasmodium falciparum has severely limited the therapeutic options for the treatment of malaria. With ever-increasing failure rates associated with chloroquine or sulphadoxine-pyrimethamine treatment, attention has turned to the few alternatives, which include quinine and mefloquine. Here, we have investigated the role of pfmdr1 3' coding region point mutations in antimalarial drug susceptibility by allelic exchange in the GC03 and 3BA6 parasite lines. Results with pfmdr1-recombinant clones indicate a significant role for the N1042D mutation in contributing to resistance to quinine and its diastereomer quinidine. The triple mutations S1034C/N1042D/D1246Y, highly prevalent in South America, were also found to enhance parasite susceptibility to mefloquine, halofantrine and artemisinin. pfmdr1 3' mutations showed minimal effect on P. falciparum resistance to chloroquine or its metabolite mono-desethylchloroquine in these parasite lines, in contrast to previously published results obtained with 7G8 parasites. This study supports the hypothesis that pfmdr1 3' point mutations can significantly affect parasite susceptibility to a wide range of antimalarials in a strain-specific manner that depends on the parasite genetic background.  相似文献   

16.
Quinoline-containing drugs such as chloroquine and quinine have had a long and successful history in antimalarial chemotherapy. Identification of ferriprotoporphyrin IX ([Fe(III)PPIX], haematin) as the drug receptors for these antimalarials called for investigations of the binding affinity, mode of interaction, and the conditions affecting the interaction. The parameters obtained are significant in recent times with the emergence of chloroquine resistant strains of the malaria parasites. This has underlined the need to unravel the molecular mechanism of their action so as to meet the requirement of an alternative to the existing antimalarial drugs. The isothermal titration calorimetric studies on the interaction of chloroquine with haematin lead us to propose an altered mode of binding. The initial recognition is ionic in nature mediated by the propionyl group of haematin with the quaternary nitrogen on CQ. This ionic interaction induces a conformational change, such as to favour binding of subsequent CQ molecules. On the contrary, conditions emulating the cytosolic environment (pH 7.4 and 150 mM salt) reveal the hydrophobic force to be the sole contributor driving the interaction. Interaction of a carefully selected panel of quinoline antimalarial drugs with monomeric ferriprotoporphyrin IX has also been investigated at pH 5.6 mimicking the acidic environment prevalent in the food vacuoles of parasite, the center of drug activity, which are consistent with their antimalarial activity.  相似文献   

17.
18.
A chloroquine resistant cloned isolate of Plasmodium falciparum, FAC8, which carries an amplification in the pfmdr1 gene was selected for high-level chloroquine resistance, resulting in a cell line resistant to a 10-fold higher concentration of chloroquine. These cells were found to have lost the amplification in pfmdr1 and to no longer over-produce the protein product termed P-glycoprotein homologue 1 (Pgh1). The pfmdr1 gene from this highly resistant cell line was not found to encode any amino acid changes that would account for increased resistance. Verapamil, which reverses chloroquine resistance in FAC8, also reversed high-level chloroquine resistance. Furthermore, verapamil caused a biphasic reversal of chloroquine resistance as the high-level resistance was very sensitive to low amounts of verapamil. These data suggest that over-expression of the P-glycoprotein homologue is incompatible with high levels of chloroquine resistance. In order to show that these results were applicable to other chloroquine selected lines, two additional mutants were selected for resistance to high levels of chloroquine. In both cases they were found to deamplify pfmdr1. Interestingly, while the level of chloroquine resistance of these mutants increased, they became more sensitive to mefloquine. This suggests a linkage between the copy number of the pfmdr1 gene and the level of chloroquine and mefloquine resistance.  相似文献   

19.
The basal activity of Ca2+-ATPase in two isolates (NL56, UNC) and two clones (D6, W2) of P.falciparum was assessed. The effects of various concentrations of chloroquine phosphate and toxic concentrations of lead acetate were also evaluated in the clones and strains of P.falciparum. The Ca2+-ATPase activity was measured by monitoring the rate of release of inorganic phosphate from the gamma-position of ATP on spectrophotometer at 820nm wavelength. The various concentrations of chloroquine (3, 6, 9, 12, 18μg/ml) and lead acetate (5, 10, 20, 30, 40μg/ml) on Ca2+-ATPase activity were measured respectively. Chloroquine phosphate inhibited Ca2+-ATPase activity in both the isolates and the cloned strains of P.falciparum in concentration dependent manner. Median Inhibitory concentration of chloroquine (MIC50) estimated from the plot of activity against chloroquine concentration was found to be 2.6mg/ml at pH 7.4 for both the isolates and cloned strains examined. Lead acetate at concentrations 5-20μg/ml inhibited Ca2+-ATPase activity in concentration dependent manner in clone W2 (Chloroquine resistant strain) while the same range of concentrations of lead acetate stimulated the activity of the enzyme in clone D6 (Chloroquine sensitive strain).The inhibitory effect of lead acetate on the enzyme in clone D6 was observed at concentrations above 20μg/ml. The result also suggests that lead ions could modulate and moderate calcium ion homeostasis in P. falciparum via its effect on Ca2+-ATPase activity. Also sufficient influx of lead ions into P. falciparum may transform the biochemical or bioenergetics nature of chloroquine sensitive strain of P. falciparum (D6) to that similar to chloroquine resistant strain (W2). In conclusion, inhibition of Ca2+-ATPase activity of P.falciparum may be part of the mechanism of action of chloroquine in its use as chemotherapy for malaria. The study implies that populations simultaneously exposed to lead pollution and malaria infection may experience failure in chloroquine therapy.  相似文献   

20.
The strength of inhibition of beta-hematin (synthetic hemozoin or malaria pigment) formation by the quinoline antimalarial drugs chloroquine, amodiaquine, quinidine and quinine has been investigated as a function of incubation time. In the assay used, beta-hematin formation was brought about using 4.5M acetate, pH 4.5 at 60 degrees C. Unreacted hematin was detected by formation of a spectroscopically distinct low spin pyridine complex. Although, these drugs inhibit beta-hematin formation when relatively short incubation times are used, it was found that beta-hematin eventually forms with longer incubation periods (<8h for chloroquine and >8h for quinine). This conclusion was supported by both infrared and X-ray powder diffraction observations. It was further found that the IC(50) for inhibition of beta-hematin formation increases markedly with increasing incubation times in the case of the 4-aminoquinolines chloroquine and amodiaquine. By contrast, in the presence of the quinoline methanols quinine and quinidine the IC(50) values increase much more slowly. This results in a partial reversal of the order of inhibition strengths at longer incubation times. Scanning electron microscopy indicates that beta-hematin crystals formed in the presence of chloroquine are more uniform in both size and shape than those formed in the absence of the drug, with the external morphology of these crystallites being markedly altered. The findings suggest that these drugs act by decreasing the rate of hemozoin formation, rather than irreversibly blocking its formation. This model can also explain the observation of a sigmoidal dependence of beta-hematin inhibition on drug concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号