首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An antigen (ACF antigen) obtained by in vitro cultivation of third-stage larvae of Ascaris suum to the fourth stage in defined medium induced significant protection in guinea pigs. The antigen was further characterized by ultrafiltration and gel filtration and was shown to be a single component by gel precipition and immunoelectrophoresis. It induced active cutaneous anaphylaxis in sensitized animals. The ACF antigen is estimated to contain about 79% protein and 22% carbohydrate and to have a molecular weight of approx 67,000.  相似文献   

2.
3.
1. The 5-hydroxytryptamine (5-HT, serotonin) turnover was examined in the tissues of adult female Ascaris suum. The 5-HT turnover was highest in the intestine at 34.7 ng 5-HT produced/mg protein/hr and 13.8 ng 5-HT produced/mg protein/hr in muscle tissue. 2. The levels of 5-HT metabolites namely tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-hydroxyindole acetic acid and 5-hydroxytryptophol were measured in muscle and intestinal tissue of adult A. suum. 3. Parachlorophenylalanine inhibited 5-HT production in muscle and intestinal tissue providing in situ evidence for the presence of tryptophan hydroxylase in this tissue. 4. Pargyline increased 5-HT production in muscle and intestinal tissue providing in situ evidence for the presence of monoamine oxidase in this tissue.  相似文献   

4.
5.
6.
Phosphoenolpyruvate carboxykinase has been purified from homogenates of Ascaris suum muscle strips to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification is a three-step procedure which yields pure enzyme in milligram quantities with good yield. The subunit molecular weight of the Ascaris enzyme is between 75,000 and 80,000. The native molecular weight is 83,000 as determined by gel filtration. The kinetic constants for substrates of the carboxylation reaction were determined and compared to those measured for the avian liver enzyme. From kinetic studies it appears likely that two separate roles for divalent metal ions exist in the catalytic process. Studies conducted with Mn2+ or with micromolar concentrations of Mn2+, in the presence of millimolar concentrations of Mg2+ suggest that Mn2+ but not Mg2+ binds directly to and activates the enzyme while either Mn2+ or Mg2+ may bind to the nucleotide resulting in the metal-nucleotide complex. The metal-nucleotide is the active form of the substrate for the reaction. In the presence of Mg2+, an increase in the Mn2+ concentration results in a decrease in the Km for P-enolpyruvate suggesting a direct role for Mn2+ stimulation and regulation of activity. The concentrations of Mn2+ and Mg2+ in Ascaris muscle strips were determined by atomic absorption spectroscopy and support the proposed hypothesis of a specific Mn2+ activation of the enzyme. The nucleotides ATP and ITP act as competitive inhibitors against GTP with KI values of 0.50 and 0.75 mM, respectively. ITP is a competitive inhibitor against both IDP and P-enolpyruvate, suggesting overlapping binding sites for the two substrates on the enzyme.  相似文献   

7.
8.
Carboxypeptidase inhibitors from Ascaris suum: the primary structure   总被引:1,自引:0,他引:1  
The carboxypeptidase A inhibitor from Ascaris suum was isolated from aqueous extracts by affinity chromatography toward immobilized carboxypeptidase A. The amino acid sequence is DQVRKCLSDT10DCTNGEKCVQ20KNKICSTIVE30IQRCEKEHFT40IPCKSNNDCQ50VWAHEKICN K60LPWGL65 . The carboxypeptidase A inhibitor is not homologous with the chymotrypsin/elastase or trypsin inhibitors from Ascaris, but shows homology in a 9-residue internal sequence with the 37/39-residue carboxypeptidase inhibitors from tomato and potato. The carboxy-terminal 5 (4) residues in the three inhibitors are similar, suggesting a common mechanism of inhibition.  相似文献   

9.
10.
11.
12.
Glycogen synthase has been purified from the obliquely striated muscle of the swine parasite Ascaris suum. The muscle contains a concentration of glycogen synthase and glycogen which is 20-fold and 15-fold, respectively, greater than rabbit skeletal muscle. The enzyme could not be solubilized with salivary amylase, but partial solubilization was achieved by activation of endogenous phosphorylase. The enzyme was purified to 85-90% homogeneity (specific activity = 4.3 units/mg) by DEAE-cellulose, Sepharose 4B, and glucosamine 6-phosphate chromatography. The purified glycogen synthase was substantially similar to rabbit skeletal muscle enzyme with respect to Mr (gel electrophoresis and gel filtration), pH dependence, aggregation properties, temperature dependence, and kinetic constants for substrates and activators. Glycogen synthase I was converted to glycogen synthase D by the cyclic AMP-dependent protein kinase. The cyclic AMP-dependent protein kinase catalyzed the incorporation of 1.3 mol of phosphate into each glycogen synthase I subunit and the concomitant interconversion to glycogen synthase D. Since glycogen is the sole fuel utilized by this organism during nonfeeding periods of the host, the characterization of this enzyme provides further insight into the regulatory mechanisms which determine glycogen turnover.  相似文献   

13.
Acid trehalase (EC 3.2.1.28) was isolated from muscle of Ascaris suum by fractionating with ammonium sulfate, acetone and column chromatography on DEAE-cellulose and phenyl sepharose CL-4B. The purified homogeneous preparation of native acid trehalase exhibited a molecular mass of 76 kDa and of 38 kDa on SDS-PAGE. The enzyme has the optimum pH 4.9, pI 4.3, Km of 6.6 mM and Vmax=34.5 nM min(-1) x mg(-1). Besides trehalose, it hydrolyses sucrose, isomaltose and maltose and, to a lesser degree melezitose, and it does not act on cellobiose and lactose. Acid trehalase was activated by MgCl2, KNO3, NaCl, CaCl2, CH2ICOOH and p-chloromercuribenzoate and inhibited by EDTA, ZnSO4 and FeCl3.  相似文献   

14.
15.
The tissues of female Ascaris suum were assayed for alpha,apha'-glucoside 1-D-glucohydrolase (trehalase) activity. A soluble from of the enzyme was isolated from muscle tissue and purified approximately 37-fold. The enzyme was specific for trehalose as substrate. The pH optimum for enzymatic activity was found to be 6.0, and the apparent Km for trehalose was estimated to be 2.1 x 10-4 M. The product of the reaction was identified as D-glucose by chemical, chromatographic and enzymatic methods.  相似文献   

16.
A rapid and efficient procedure has been developed to purify phosphofructokinase from the muscle of the parasitic roundworm, Ascaris suum. The procedure can be accomplished in 1 day with a 420-fold purification and a 60% yield. The enzyme was shown to be homogeneous by two-dimensional electrophoresis, Sepharose 6B column chromatography, and high performance liquid chromatography utilizing a size exclusion column. The subunit molecular weight of the enzyme was found to be 95,000 by electrophoresis in the presence of sodium dodecyl sulfate. In solutions of low ionic strength, the native enzyme aggregated to species of higher molecular weight than did the rabbit muscle phosphofructokinase. In the presence of 0.2 M (NH4)2SO4, the minimum native molecular weight was determined to be 398,000 by high performance liquid chromatography and Sepharose 6B column chromatography. Therefore, the enzyme appears to be a tetramer with identical or near-identical subunits. The apparent isoelectric point of the enzyme was shown to be 7.3 to 7.4 by both column and gel isoelectric focusing. Amino acid analysis revealed a lower number of the aromatic residues Phe, Tyr, and Trp than in the rabbit muscle enzyme and this is in agreement with the lower extinction coefficient of E1%280 nm = 6.5. Analysis of the purified enzyme revealed 7.4 +/- 0.6 mol of phosphate/mol of enzyme.  相似文献   

17.
18.
Treatment with diethylpyrocarbonate results in a first-order loss of the malate oxidative decarboxylase activity of NAD-malic enzyme. First-order plots are biphasic, with about 40-50% activity loss in the first phase. The inactivation process is not saturable, and the second-order rate constant is 4.7 M-1 S-1. Malate (250 mM) provides complete protection against inactivation (as measured by a decrease in the inactivation rate), and less malate is required with Mg2+ present. Partial protection (50%) is afforded by either NAD+ (1 mM) or Mg2+ (50 mM). Treatment of modified (inactive) enzyme with hydroxylamine restores activity to 100% of the control when corrected for the effect of hydroxylamine on unmodified enzyme. A total of 10-13 histidine residues/subunit are acylated concomitant with loss of activity while 1-2 tyrosines are modified prior to any activity loss. The presence of Mg2+ and malate at saturating concentrations protect 1-2 histidine residues/subunit. The intrinsic fluorescence of the enzyme decreases with time after addition of diethylpyrocarbonate, but the rate constant for this process is at least 10-fold too low to account for the biphasicity observed in the first order plots. The histidine modified which is responsible for loss of activity has a pK of 8.3 as determined from the pH dependence of the rate of inactivation. The histidine titrated is still modified under conditions where the residue is completely protonated but at a rate 1/100 the rate of the unprotonated histidine. The results suggest that 1-2 histidines are in or near the malate binding site and are required for malate oxidative decarboxylation.  相似文献   

19.
20.
Putrescine-dependent S-adenosylmethionine decarboxylase (EC 4.1.1.50) was demonstrated in Ascaris suum and Onchocerca volvulus; activation was found to be about fourfold by putrescine. Mg2+ did not affect the enzyme activity. A. suum was taken as a model nematode and its S-adenosylmethionine decarboxylase was partially purified and characterized. The molecular weight was estimated to be 220,000. The apparent Km-value for adenosylmethionine was determined to be 17 microM. Methylglyoxal bis(guanylhydrazone) and berenil competitively inhibited the enzyme activity; the apparent Ki-values were found to be 0.24 microM and 0.11 microM, respectively. The dependence of filarial worms on uptake and interconversion of putrescine and polyamines as well as properties of the S-adenosylmethionine decarboxylase, different from the host enzyme, points to the polyamine metabolisms as a useful target for chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号