首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiating imaginal hypodermal cells of Drosophila melanogaster form adult cuticle during the second half of the pupal stage (about 40 to 93 hr postpupariation). A group of proteins with molecular weights of 23,000, 20,000, and 14,000 is identified as putative major wing cuticle proteins with the following biological properties: These proteins are abundant components of cuticle and are major synthetic products of cuticle-secreting hypodermal cells. They are leucine-rich and methionine-free and are the most prominent proteins of this type synthesized by wing hypoderm at 65 hr, during the period of procuticle formation. Electron microscopic autoradiography shows that leucine-rich, methionine-free proteins specifically localize to the apical cell surface and newly secreted cuticle of 65-hr wing cells. This strongly suggests the export of these proteins to the cuticle. Lastly, these proteins undergo a reduction in extractability just after eclosion, during the period of cuticle protein crosslinking (sclerotization). The synthesis of these major hypoderm proteins is temporally regulated in development. In wing cells, the 14-kDa proteins are synthesized first, from 53 to 78 hr, and the 20- and 23-kDa proteins are synthesized from 63 to 93 hr. The pattern of synthesis for these proteins is similar in abdominal cells but delayed by 6 to 10 hr. Two-dimensional gel electrophoresis shows that each of the 23-, 20-, and 14-kDa size classes contains at least two component polypeptides. Patterns of protein synthesis in cells of the imaginal hypodermis are regulated in a precise temporal sequence during the production of adult cuticle. Their study yields a useful system for the analysis of molecular events in gene control and cell differentiation.  相似文献   

2.
The surface layers of the cuticle, the hypodermal membranes and the muscle membranes of the adult, the in utero larvae and the infective-stage larvae of the nematode Trichinella spiralis have been studied by means of the freeze-fracturing technique. The surface of the cuticle of both adults and larvae fractures in ways different from membranes of internal cells. The surface coat on top of the epicuticle is probably the layer that changes antigenically. Reticulate ridges, with associated particles, on the E face of the outer hypodermal membrane of the adult are probably sites of attachment of the hypodermis to the cuticle. Longitudinally arranged ridges, with associated particles, of the outer hypodermal membrane are probably points of attachment to the cuticle in the in utero and infective larvae. Rectilinear arrays of particles are present on the P face of the inner hypodermal membrane and the P face of the muscle membrane adjacent to the hypodermis of adults and larvae and probably play a role in adhesion of the muscle membrane to the hypodermis. Particle-free areas of membrane lie external to the Z bundles of the muscle cell and are similar to the sites of attachment of Z lines in insect muscles.  相似文献   

3.
Repeated molting of the cuticula is an integral part of arthropod and nematode development. Shedding of the old cuticle takes place on the surface of hypodermal cells, which are also responsible for secretion and synthesis of a new cuticle. Here, we use the model nematode Caenorhabditis elegans to show that muscle cells, laying beneath and mechanically linked to the hypodermis, play an important role during molting. We followed the molecular composition and distribution of integrin mediated adhesion structures called dense bodies (DB), which indirectly connect muscles to the hypodermis. We found the concentration of two DB proteins (PAT-3/β-integrin and UNC-95) to decrease during the quiescent phase of molting, concomitant with an apparent increase in lateral movement of the DB. We show that levels of the E3-ligase RNF-5 increase specifically during molting, and that RNF-5 acts to ubiquitinate the DB protein UNC-95. Persistent high levels of RNF-5 driven by a heatshock or unc-95 promoter lead to failure of ecdysis, and in non-molting worms to a progressive detachment of the cuticle from the hypodermis. These observations indicate that increased DB dynamics characterizes the lethargus phase of molting in parallel to decreased levels of DB components and that temporal expression of RNF-5 contributes to an efficient molting process.  相似文献   

4.
Locomotion in Caenorhabditis elegans requires force transmission through a network of proteins linking the skeletal muscle, via an intervening basal lamina and epidermis (hypodermis), to the cuticle. Mutations in mua-6 result in hypodermal rupture, muscle detachment from the bodywall, and progressive paralysis. It is shown that mua-6 encodes the cytoplasmic intermediate filament (cIF) A2 protein and that a MUA-6/IFA-2::GFP fusion protein that rescues the presumptive mua-6 null allele localizes to hypodermal hemidesmosomes. This result is consistent with what is known about the function of cIFs in vertebrates. Although MUA-6/IFA-2 is expressed embryonically, and plays an essential postembryonic role in tissue integrity, it is not required for embryonic development of muscle-cuticle linkages nor for the localization of other cIFs or hemidesmosome-associated proteins in the embryo. Finally, the molecular lesion in the mua-6(rh85) allele suggests that the head domain of the MUA-6/IFA-2 is dispensable for its function.  相似文献   

5.
Muscle cell attachment in Caenorhabditis elegans   总被引:11,自引:2,他引:9       下载免费PDF全文
In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle.  相似文献   

6.
The ultrastructure of the integument of the quiescent reduced tritonymph of the trombiculid mite Hirsutiella zachvatkini (Schluger) was investigated by means of transmission electron microscopy. Mites were investigated daily during the 14–16 day tritonymphal period (imagochrysalis). This period includes the deutonymphal moult (1–3 days), the quiescent tritonymph period (2–4 days), and the tritonymphal moult into the adult mite (6–10 days). A distinct recognizable feature of the tritonymphal moulting cycle is a sequence of events independent of precise time intervals. This process involves partial destruction and reorganization of the hypodermis of the previous instar, and formation of a new hypodermis of the subsequent instar from islands of rudimentary hypodermal cells. The integument of the reduced tritonymph differs greatly from that of both larva and active deutonymph and adult. It consists of a simply organized hypodermal layer of varying thickness and a thick clear poorly lamellate cuticle with curved pore canals, and lacking setae. The epicuticle is very thin and without a clear protein layer. The tritonymphal instar as such with its own cuticle situated near the hypodermis is encased within the detached covering of the previous active deutonymph, and may be considered a calyptostasic and entirely pharate instar. There is a tendency for reduced tritonymphal stage to be eliminated from ontogenesis and this stage is not homologous to the pupa of insects.  相似文献   

7.
Tissue functions and mechanical coupling of cells must be integrated throughout development. A striking example of this coupling is the interactions of body wall muscle and hypodermal cells in Caenorhabditis elegans. These tissues are intimately associated in development and their interactions generate structures that provide a continuous mechanical link to transmit muscle forces across the hypodermis to the cuticle. Previously, we established that mup-4 is essential in embryonic epithelial (hypodermal) morphogenesis and maintenance of muscle position. Here, we report that mup-4 encodes a novel transmembrane protein that is required for attachments between the apical epithelial surface and the cuticular matrix. Its extracellular domain includes epidermal growth factor-like repeats, a von Willebrand factor A domain, and two sea urchin enterokinase modules. Its intracellular domain is homologous to filaggrin, an intermediate filament (IF)-associated protein that regulates IF compaction and that has not previously been reported as part of a junctional complex. MUP-4 colocalizes with epithelial hemidesmosomes overlying body wall muscles, beginning at the time of embryonic cuticle maturation, as well as with other sites of mechanical coupling. These findings support that MUP-4 is a junctional protein that functions in IF tethering, cell-matrix adherence, and mechanical coupling of tissues.  相似文献   

8.
C. Elegans has four muscle quadrants that are used for locomotion. Contraction is converted to locomotion because muscle cells are anchored to the cuticle (the outer covering of the worm) by a specialized basement membrane and hemidesmosome structures in the hypodermis (a cellular syncytium that covers the worm and secretes the cuticle). To study muscle assembly, we have used antibodies to determine the spatial and temporal distribution of muscle and attachment structure components in wild-type and mutant C. elegans embryos. Myofibrillar components are first observed diffusely distributed in the muscle cells, and are expressed in some dividing cells. Later, the components accumulate at the membrane adjacent to the hypodermis where the sarcomeres will form, showing that the cells have become polarized. Assembly of muscle attachment structures is spatially and temporally coordinated with muscle assembly suggesting that important developmental signals may be passed between muscle and hypodermal cells. Analysis of embryos homozygous for mutations that affect muscle assembly show that muscle components closer to the membrane than the affected protein assemble quite well, while those further from the membrane do not. Our results suggest a model where lattice assembly is initiated at the membrane and the spatial organization of the structural elements of the muscle is dictated by membrane proximal events, not by the filament components themselves.  相似文献   

9.
Patch-clamp recordings from muscle- and cuticle-facing hypodermal membranes of the gastrointestinal nematode Ascaris suum reveal a high-conductance, voltage- sensitive Ca(2+) -dependent Cl(-) channel. The hypodermal channel has a conductance of 195 pS in symmetrical 160 mM NaCl. The open probability of the channel is highly voltage-sensitive, and channel activity is not observed when Ca(2+) is reduced to <100 microM. The channel is permeable to organic anions that are major end-products of carbohydrate metabolism in A. suum, including acetate, butyrate and 2-methylvalerate. The conductances and relative permeabilities of these organic anions are inversely related to size, with 2-methylvalerate being only approximately 3% as permeable as Cl(-). The diameter of the channel pore was 12.3+/-0.2 A, calculated from the relative permeability coefficients of Cl(-) and the organic anions. Results of this study are consistent with the hypothesis that the large conductance anion channel in A. suum hypodermal membranes provides a low energy pathway for organic anion excretion from the hypodermal compartment, followed by diffusion across the aqueous channels of the cuticle matrix.  相似文献   

10.
11.
PERUMALLA, C. J., CHMIELEWSKI, J. G. & PETERSON, C A., 1990. A survey of angiosperm species to detect hypodermal Casparian bands. III. Rhizomes. Rhizomes of ten species of the class Magnoliopsida (Dicotyledoneae) and five species of the class Liliopsida (Monocotyledoneae) were studied to determine whether Casparian bands exist in their hypodermes. The hypodermal walls of rhizomes of all species surveyed appeared autofluorescent under violet light. In sections cleared with NaOH and stained with Chelidonium majus root extract, the radial walls and sometimes the tangential walls of the hypodermis showed bright fluorescence. When the rhizomes were treated with the apoplastic dye, Cellufluor, the dye was initially blocked by the cuticle. When the continuity of the cuticle was disrupted with a needle before treating with Cellufluor, the dye penetrated all the walls of the epidermis and the outer tangential walls of the hypodermis but was blocked by the radial walls of the hypodermis. The walls of the hypodermis stained positively for suberin or suberin and lignin and were resistant to treatment with concentrated sulphuric acid. On the basis of the above tests, it is concluded that Casparian bands are present in the hypodermis of rhizomes of all species surveyed.  相似文献   

12.
13.
Normal locomotion of the nematode Caenorhabditis elegans requires transmission of contractile force through a series of mechanical linkages from the myofibrillar lattice of the body wall muscles, across an intervening extracellular matrix and epithelium (the hypodermis) to the cuticle. Mutations in mua-3 cause a separation of the hypodermis from the cuticle, suggesting this gene is required for maintaining hypodermal-cuticle attachment as the animal grows in size postembryonically. mua-3 encodes a predicted 3,767 amino acid protein with a large extracellular domain, a single transmembrane helix, and a smaller cytoplasmic domain. The extracellular domain contains four distinct protein modules: 5 low density lipoprotein type A, 52 epidermal growth factor, 1 von Willebrand factor A, and 2 sea urchin-enterokinase-agrin modules. MUA-3 localizes to the hypodermal hemidesmosomes and to other sites of mechanically robust transepithelial attachments, including the rectum, vulva, mechanosensory neurons, and excretory duct/pore. In addition, it is shown that MUA-3 colocalizes with cytoplasmic intermediate filaments (IFs) at these sites. Thus, MUA-3 appears to be a protein that links the IF cytoskeleton of nematode epithelia to the cuticle at sites of mechanical stress.  相似文献   

14.
Muscle, hypodermis and gastrointestinal epithelial cells from adult female Ascaris lumbricoides var. suum were found to contain serotonin based upon glyoxylic acid induced histofluorescence and indirect immunolabeling with an antiserotonin monoclonal antibody conjugated to protein A-colloidal gold. Histofluorescence indicated that muscle-hypodermis and intestinal epithelial cells contained significant concentrations of 5-hydroxytryptamine while fluorescence was absent in the nerve cord and cuticle. Immunolabeling at the ultrastructural level indicated that serotonin was sequestered in electron-opaque patches, dense vesicles and mitochondria of the muscle-hypodermis and intestinal tissue. Perfusion of whole worms and isolated tissues with 10(4) M-serotonin further indicated: (1) immunolabeled patches and dense vesicles were often associated with cytoskeletal elements, (2) serotonin did not appear to enter the intestinal or muscle cells by endocytosis, (3) immunolabeled patches examined with energy dispersive X-ray spectrometry (X-ray microanalysis) were found to contain iron at concentrations approximately double that of the surrounding cytoplasm.  相似文献   

15.
In C. elegans, assembly of hypodermal hemidesmosome-like structures called fibrous organelles is temporally and spatially coordinated with the assembly of the muscle contractile apparatus, suggesting that signals are exchanged between these cell types to position fibrous organelles correctly. Myotactin, a protein recognized by monoclonal antibody MH46, is a candidate for such a signaling molecule. The antigen, although expressed by hypodermis, first reflects the pattern of muscle elements and only later reflects the pattern of fibrous organelles. Confocal microscopy shows that in adult worms myotactin and fibrous organelles show coincident localization. Further, cell ablation studies show the bodywall muscle cells are necessary for normal myotactin distribution. To investigate myotactin's role in muscle-hypodermal signaling, we characterized the myotactin locus molecularly and genetically. Myotactin is a novel transmembrane protein of approximately 500 kd. The extracellular domain contains at least 32 fibronectin type III repeats and the cytoplasmic domain contains unique sequence. In mutants lacking myotactin, muscle cells detach when embryonic muscle contraction begins. Later in development, fibrous organelles become delocalized and are not restricted to regions of the hypodermis previously contacted by muscle. These results suggest myotactin helps maintain the association between the muscle contractile apparatus and hypodermal fibrous organelles.  相似文献   

16.
1. Cuticles were isolated from developmental stages of the swine nematode Ascaris suum by a combination of mechanical disruption and detergent treatment of larvae or by surgical removal of cuticle from adults. Proteins from the isolated cuticles were solubilized with 2-mercaptoethanol (2ME) and analyzed by SDS-PAGE. 2. 2ME soluble, cuticular proteins from adults consisted of 5 to 6 bands with 80% of proteins in 2 bands with mol. wts of 106,000 and 93,000. Cuticular proteins from the third and fourth larval stages (L3 and L4) were comparable to adult, but differences in the number of bands were observed. The soluble proteins from the adult, L3 and L4 were readily degraded by a bacterial collagenase suggesting that these proteins are collagen-like structural elements of the cuticle. 3. The soluble proteins from the second stage (L2) differed from the adult and other larval stages in both the number and mol. wt of protein bands and their lack of degradation by bacterial collagenase. Amino acid composition of soluble cuticular proteins were similar for adult and L4, but glycine and proline were present in lower amounts in the L2. 4. These results support a hypothesis that there are stage specific differences in cuticular proteins from A. suum and that the greatest differences appear to exist between L2 and other stages.  相似文献   

17.
The dominant proteins released by Ascaris suum during development in vitro from the L3 to L4 stage were identified as collagenous cuticular proteins by sequence analysis and susceptibility to digestion by collagenase. Under reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the collagen proteins separated into 3 groups with molecular weights estimated at 32 kDa, 54-60 kDa, and 71-91 kDa. The 32-kDa protein represents monomeric collagen; the 54-60- and 71-91-kDa components represent dimeric and trimeric forms, respectively, polymerized by nonreducible cross-links. Furthermore, the release of these forms of collagen was developmentally regulated, as exemplified by a sequential temporal progression from monomeric to dimeric to trimeric forms in association with the in vitro transition from L3 to L4. The data suggest that collagen released in vitro during development of A. suum L3 to L4 reflects the increased translation of collagen gene products and their initial assembly into higher molecular weight molecules associated with the synthesis of the L4 cuticle. A biotinylated dipeptidyl fluoromethylketone cysteine protease inhibitor (Bio-phe-ala-FMK) bound specifically to the 32-kDa collagen and, to a lesser extent, to a 30-kDa protein; binding was dependent on the presence of dithiothreitol (DTT) and was prevented by iodoacetamide. Because cysteine residues play an essential role in the initial assembly of the collagen monomers into the higher molecular weight oligomers present in the mature nematode cuticle, inhibition of molting of A. suum L3 to L4 by the cysteine protease inhibitor Z-phe-ala-FMK might be due to its binding to thiol groups of collagen monomers during a critical phase of collagen assembly. Prevention of cystine cross-links during this critical period of cuticle assembly by peptide-FMK inhibitors may represent a potential control mechanism having a novel mechanism of action.  相似文献   

18.
Shatrov AB 《Tsitologiia》2000,42(3):219-227
The ultrastructural organization of hypodermis and the process of cuticle deposition is described for the pharate larvae of a trombiculid mite, Leptotrombidium orientale, being under the egg-shell and prelarval covering. The thin single-layered hypodermis consists of flattened epithelial cells containing oval or stretched nuclei and smooth basal plasma membrane. The apical membrane forms short scarce microvilli participating in the cuticle deposition. First of all, upper layers of the epicuticle, such as cuticulin lamella, wax and cement layers, are formed above the microvilli with plasma membrane plaques. Cuticulin layer is seen smooth at the early steps of this process. Very soon, however, epicuticle starts to be curved and forms particular high and tightly packed ridges, whereas the surface of hypodermal cells remains flat. Then a thick layer of the protein epicuticle is deposited due to secretory activity of hypodermal cells. Nearly simultaneously the thick lamellar procuticle starts to form through the deposition of their microfibrils at the tips of microvilli of the apical plasma membrane. Procuticle, as such, remains flat, is situated beneath the epicuticular ridges and contains curved pore canals. Cup-like pores in the epicuticle provide augmentation of the protein epicuticle mass due to secretion of particular substances by cells and to their transportation through the pore canals towards these epicuticular pores. The very beginning of the larval cuticle formation apparently indicates the starting point of the larval stage in ontogenesis, even though it remains for some time enveloped by the prelarval covering or sometimes by the egg-shell. When all the processes of formation are over, hungry larvae with a fully formed cuticle are actively hatched from two splitted halves of prelarval covering.  相似文献   

19.
Crustaceans are covered by a cuticle that does not grow. In order for an individual to grow, the cuticle must periodically be shed (ecdysis). Replacement of the old cuticle with a new one depends on processes that require precise timing and control, yet the nature and location of these controls remain unclear. A candidate site for them is within the hypodermal microvilli. These cellular structures extend through pore canals deep into the acellular cuticular matrix. Changes in the lipid composition of hypodermal microvilli could modulate water and ion fluxes and enzyme activities during critical stages of the molt cycle; however, the lipid composition of these structures has not been assessed during the molt cycle. Data presented here show that phospholipids isolated from hypodermal microvilli of Callinectes sapidus initially have elevated levels of n-6 fatty acids that decline steadily beginning just after ecdysis. Experiments with liposomes reveal that n-6 fatty acids decrease the calcium permeability of membranes, suggesting that the initially elevated levels in the cuticle may function to reduce calcium flux from the cuticle into the hypodermis. In addition, the ratio of cholesterol to phospholipid and the proportion of oleic acid in membrane phospholipids are maximal at 6 h post-ecdysis. It is known that changes in cholesterol and oleic acid content alter membrane permeability to water. It is, therefore possible that water flux through hypodermal membranes is also modulated in the early post-molt cuticle. Changes in microvillar lipid composition might serve importantly to control biomineralization in the post-ecdysal cuticle.  相似文献   

20.
A glycogen synthase, designated GS II, which occurs in a protein/carbohydrate complex has been purified from Ascaris suum muscle. The purified GS-II complex which is eluted from concanavalin-A--Sepharose contains proteins with Mr 140,000 and 66,000 and a glycoprotein with a carbohydrate/protein mass ratio of 3:1. GS II activity was totally dependent on glucose 6-phosphate, but exogenous glycogen was not required for polysaccharide synthesis. The GS-II complex was not phosphorylated by cyclic-AMP-dependent protein kinase, and antibodies to the protein and carbohydrate components of GS II did not cross react with the purified cyclic-AMP-regulated glycogen synthase (GS I) from A. suum muscle. Polysaccharide which was synthesized de novo by the complex was added to the large-molecular-mass glycoprotein in GS II. The glycogen-like character of the newly synthesized polysaccharide was confirmed by the observation that glycogen phosphorylase utilized the polymer as substrate in both the synthesis and degradation reactions. A model is discussed in which a core glycoprotein serves as the substrate for a glycogen synthase which is distinctly different from GS I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号