首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicobacter pylori persists chronically within individuals and as they spread the mutating bacteria migrate with them. The continuous selection and microevolution generates a population of closely related but different bacteria that behave like a quasi-species. Within this heterogeneity, H. pylori strains fall into distinct types, into the virulent (type I) and less virulent (type II) strains, based on the presence of a pathogenicity island (cag) that encodes a specialized secretion machinery. We propose that during chronic infection a dynamic equilibrium between bacteria expressing a disparate degree of virulence is established, and that diverse forms prevail at different times.  相似文献   

2.
Helicobacter pylori may increase or inhibit gastric acid. We studied acid variations and plasma gastrin in cats harboring Helicobacter felis, harboring H. pylori, or free of gastric pathogens with reference to thioperamide (H(3) receptor antagonist) and SR-27417A (PAF receptor antagonist). In cats harboring H. felis, gastric mucosa were histologically normal. After H. felis eradication, pentagastrin-stimulated acid secretion was increased (40%) compared with the situation before eradication. Thioperamide abolished this inhibitory effect of H. felis, whereas SR-27417A did not. Basal and meal-stimulated plasma gastrin levels were not affected by eradication therapy. Acid secretion was inhibited (-80%) in week 3, increased from weeks 5 to 9, and remained constant for up to 42 weeks after H. pylori infection. SR-27417A had no effect on acid secretion before week 8 but inhibited it thereafter, and thioperamide increased it (20%) only before week 7 in those cats. Helicobacter inhibits gastric acid via an H(3) receptor pathway. Inflammatory mediators are thus involved in adaptation to the inhibitory effects of H. pylori on acid secretion.  相似文献   

3.
Schröder G  Lanka E 《Plasmid》2005,54(1):1-25
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a DNA secretion apparatus the Mpf complex additionally requires the coupling protein (CP). The CP interacts with the DNA substrate and couples it to the secretion pore formed by the Mpf system. Mpf/CP conjugation systems belong to the family of type IV secretion systems (T4SS), which also includes DNA-uptake and -release systems, as well as effector protein translocation systems of bacterial pathogens such as Agrobacterium tumefaciens (VirB/VirD4) and Helicobacter pylori (Cag). The increased efforts to unravel the molecular mechanisms of type IV secretion have largely advanced our current understanding of the Mpf/CP system of bacterial conjugation systems. It has become apparent that proteins coupled to DNA rather than DNA itself are the actively transported substrates during bacterial conjugation. We here present a unified and updated view of the functioning and the molecular architecture of the Mpf/CP machinery.  相似文献   

4.
We implemented a statistical model into our protein interaction database for validation of two-hybrid assays of Helicobacter pylori, and prediction of putative protein interactions not yet discovered experimentally. To present the enormous amount of experimental and inferred protein interaction networking maps, the H.pylori Database of Protein Interactomes (hp-DPI) is developed with a succinct yet comprehensive visualization tool integrated with annotation from Genbank, GO, and KEGG. hp-DPI is first built with, but not limited to, H.pylori protein interactions and is expected to naturally include other organisms' protein interacting relationships in the future.  相似文献   

5.
The complement of expressed cellular proteins - the proteome - is organized into functional, structured networks of protein interactions that mediate assembly of molecular machines and dynamic cellular pathways. Recent studies reveal the biological roles of protein interactions in bacteriophage T7 and Helicobacter pylori, and new methods allow to compare and to predict interaction networks in other species. Smaller scale networks provide biological insights into DNA replication and chromosome dynamics in Bacillus subtilis and Archeoglobus fulgidus, and into the assembly of multiprotein complexes such as the type IV secretion system of Agrobacterium tumefaciens, and the cell division machinery of Escherichia coli. Genome-wide interaction networks in several species are needed to obtain a biologically meaningful view of the higher order organization of the proteome in bacteria.  相似文献   

6.
Chronic infection of the human gastric mucosa with Helicobacter pylori is a major cause of gastroduodenal pathologies, including peptic ulcerations, mucosa-associated lymphoid tissue (MALT) lymphoma and adenocarcinoma. Helicobacter pylori strains carrying the cag pathogenicity island, which encodes an active type IV protein secretion system ( cag + or type I strains), are preferentially associated with strong gastric inflammation and severe disease. We show here that cag + H. pylori strains use the type IV secretion system to inject the bacterial protein CagA into various types of professional phagocytes, including human polymorphonuclear leucocytes (PMNs) and the human and murine macrophage cell lines THP-1 and J774A.1 CagA is rapidly tyrosine phosphorylated and proteolytically processed to generate a stable 35–45 kDa C-terminally tyrosine-phosphorylated protein fragment. H. pylori was efficiently ingested by the different types of phagocytic cells. A chromosomal deletion of the complete pathogenicity island had no significant effect on the rate of ingestion. Furthermore, the survival rate of H. pylori in the phagosome was unchanged between the wild type and a deletion mutant lacking the type IV secretion system. Thus, the type IV secretion system seems to be involved neither in active phagocytosis resistance nor in prolonged survival of the bacteria in phagocytic cells.  相似文献   

7.
消化系黏膜屏障对致病菌有防御功能,但是在根除幽门螺杆菌(H. pylori)过程中会导致黏膜屏障的破坏。大量研究表明,益生菌通过修复上皮细胞以及细胞间连接、减少黏液分泌和炎症反应以及缓解消化道菌群紊乱等方式修复黏膜屏障。本文主要综述幽门螺杆菌对消化系黏膜屏障的损害及其机制,以及益生菌对黏膜屏障损伤的保护及修复机制研究的进展。  相似文献   

8.
Macrolide antibiotics have an anti-inflammatory effect by suppressing lipopolysaccharide-induced IL-8 production. IL-8 secretion from monocytes is observed in Helicobacter pylori infection. Although cag gene products are known to induce IL-8 secretion, whether other bacterial substances can initiate the reaction is not determined. In this study, we show that clarithromycin induced down-regulation of Toll-like receptor 4 expression and did not lead to a decrease in IL-8 production and H. pylori lipopolysaccharide. However, Toll-like receptor 4 activation was possibly not the main cause in the induction of inflammation during H. pylori infection.  相似文献   

9.
Helicobacter pylori has been shown, along with other Helicobacter species to produce effector molecules that induce substantial physiological changes on acid and pepsin secretion. The effects are clinically evident, and long-term achlorhydria may be a risk factor for gastric cancer. Further identification and characterization of the factors may lead to additional understanding of gastric physiology.  相似文献   

10.
Helicobacter pylori affects gastric acid secretion via several mechanisms. One of these is by changing gastric regulatory physiology. The infection elevates plasma gastrin levels and decreases gastric mucosal expression of the inhibitory peptide somatostatin. These changes may be due to products of H. pylori itself or inflammatory cytokines released in H. pylori infection: acid secretion is inhibited less by a low intra-gastric pH, infusions of cholecystokinin and gastric distention in infected persons. Eradication of H. pylori rapidly decreases basal acid secretion and gastrin-releasing, peptide-stimulated acid secretion. There are now reports that maximally-stimulated acid secretion, a measure of the parietal cell mass, falls significantly six and 12 months after eradication of H. pylori from duodenal ulcer patients. This might be due to withdrawal of the trophic effect of gastrin. However H. pylori can also decrease gastric acid secretion, both through the mechanisms described in Dr. Cave''s paper and by causing gastric mucosal atrophy with loss of parietal cells. The net effect on acid presumably depends on which mechanism predominates. The processes involved may be crucial determinants of clinical outcome. For example, infection with little atrophy and high acid secretion is associated with duodenal ulcers, while infection with atrophy and low acid secretion increases the risk of gastric cancer of the intestinal-type.  相似文献   

11.
A comparative genomic approach was used to identify Helicobacter pylori 26695 open reading frames (ORFs) which are conserved in H. pylori J99 but highly diverged in other eubacteria. A survey of selected pathways of central intermediary metabolism was also carried out, and genes with a potentially selective role in H. pylori were identified. Forty-five ORFs identified in these two analyses were screened using a rapid vector-free allelic replacement mutagenesis technique, and 33 were shown to be essential in vitro. Notably, 13 ORFs gave essentiality results which are unexpected in view of their known or proposed functions, and phylogenetic analysis was used to investigate the annotation of 7 such ORFs which are highly diverged. We propose that the products of a number of these H. pylori-specific essential genes may be suitable targets for novel anti-H. pylori therapies.  相似文献   

12.
About 25% of humans with chronic gastritis are negative for Helicobacter pylori, suggesting that other bacteria are capable of causing inflammation. Bacterial overgrowth may occur in the stomach under conditions of reduced acid secretion. In this review, we will explore what is generally known about non-H. pylori organisms and their ability to induce gastritis, with particular focus on Acinetobacter lwoffi.  相似文献   

13.
Chronic Helicobacter pylori infection causes a slight postprandial hypergastinemia, generally referred to as exaggerated or inappropriate gastrin release. This can be ablated by eradication of this infective agent. The expectations that this would further unravel the mysteries of the pathogenesis of peptic ulcer disease have not been fulfilled. It is now well established that of conventional acid secretory patterns such as basal acid secretion, maximum gastrin-stimulated acid secretion, and of sensitivity of the parietal cell to gastrin, only basal acid is modified by chronic H. pylori colonization. This particularly relates to basal secretion in duodenal ulcer patients, as basal secretion of otherwise healthy, chronically H. pylori-infected subjects appears to be affected in only a small proportion of subjects. It is of particular interest, however, that chronic H. pylori infection supplies a solid explanation why acid inhibitory pathways are deficient in duodenal ulcer disease, since this is reversible following H. pylori eradication as demonstrated by elegant studies with gastrin-releasing, peptide-stimulated acid secretion. Furthermore, it has gradually become apparent that exaggerated gastrin response is probably no more than an innocent bystander of chronic H. pylori infection. Paradoxically, in a small subset of patients, hypo-or anacidity accompanying chronic H. pylori infection can be reverted by H. pylori eradication, for currently unknown reasons.  相似文献   

14.
Type IV secretion systems (TFSS) mediate secretion or direct cell-to-cell transfer of virulence factors (proteins or protein-DNA complexes) from many Gram-negative animal, human and plant pathogens, such as Agrobacterium tumefaciens, Bartonella tribocorum, Bordetella pertussis, Brucella suis, Helicobacter pylori, Legionella pneumophila and Rickettsia prowazekii, into eukaryotic cells. Bacterial conjugation is also classified as a TFSS-like process mediating the spread of broad-host-range plasmids between Gram-negative bacteria such as RP4 and R388, which carry antibiotic resistance genes. Genetic, biochemical, cell biological and structural biology experiments led to significant progress in the understanding of several aspects of TFSS processes. X-ray crystallography revealed that homologues of the A. tumefaciens inner membrane-associated proteins VirB11 and VirD4 from H. pylori and R388, respectively, may form channels for substrate translocation or assembly of the transmembrane TFSS machinery. Biochemical and cell biological experiments revealed interactions between components of the periplasmic core components VirB8, VirB9 and VirB10, which may form the translocation channel. Analysis of A. tumefaciens virulence proteins VirE2 and VirF suggested that the periplasmic translocation route of the pertussis toxin from B. pertussis may be more generally valid than previously anticipated. Secretion and modification of toxins from H. pylori and L. pneumophila profoundly affect host cell metabolism, thus entering the discipline of cellular microbiology. Finally, results from genome sequencing projects revealed the presence of up to three TFSS in a single organism, and the analysis of their interplay and adaptation to different functions will be a future challenge. TFSS-carrying plasmids were discovered in different ecosystems, suggesting that genetic exchange may speed up their evolution and adaptation to different cell-cell interactions.  相似文献   

15.
Song JY  Park SG  Kang HL  Lee WK  Cho MJ  Park JU  Baik SC  Youn HS  Ko GH  Rhee KH 《Plasmid》2003,50(3):236-241
We have analyzed a Helicobacter pylori plasmid, pHP489. The 1222-bp nucleotide sequence had one open reading frame, a DnaA-binding site, one direct repeat, and three inverted repeats. The (G+C) content of pHP489 was 33.3%. Although the nucleic acid sequence and deduced amino acid sequence were homologous to those of other bacterial plasmid Rep proteins, the degree of similarity was very low. A deletion analysis showed that the Rep protein was not required for the replication of pHP489 in its H. pylori host, but the host replication machinery was needed.  相似文献   

16.
To test the hypothesis that Helicobacter pylori regulates gastric cell secretion of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), culture media from infected and uninfected human gastric adenocarcinoma (AGS) cells were analyzed by zymography, MMP activity assays, and immunoblotting. AGS cells secreted gelatinolytic (prominently 90 kDa) and caseinolytic (110 kDa) activity together with MMP-1, MMP-3, and TIMP-1, TIMP-2, and TIMP-3 isoforms. H. pylori secreted caseinolytic activity (60 kDa), MMP-3-like enzyme activity, and TIMP-3 immunoreactivity. H. pylori infection increased the 110-kDa caseinolytic activity and induced new gelatinolytic (~35 kDa) and caseinolytic (22 kDa) activities. Infection also increased both basal secretion and activation of MMP-1 and MMP-3, enhanced TIMP-3 secretion, and increased the formation of MMP-3/TIMP-3 complexes. TIMP-1 and TIMP-2 secretion were unchanged. Normal AGS cells showed a pancellular distribution of TIMP-3, with redistribution of immunoreactivity toward sites of bacterial attachment after H. pylori infection. The data indicate that MMP and TIMP secretion by AGS cells is modulated by H. pylori infection and that host MMP-3 and a TIMP-3 homolog expressed by H. pylori mediate at least part of the host cell response to infection.  相似文献   

17.
Helicobacter pylori modulation of gastric acid   总被引:4,自引:0,他引:4  
Helicobacter pylori plays major causative roles in peptic ulcer disease and gastric cancer. Elevated acid secretion in patients with duodenal ulcers (DUs) contributes to duodenal injury, and diminished acid secretion in patients with gastric cancer allows carcinogen-producing bacteria to colonize the stomach. Eradication of H. pylori normalizes acid secretion both in hyper-secreting DU patients and hypo-secreting relatives of gastric cancer patients. Therefore, we and others have asked how H. pylori causes these disparate changes in acid secretion. H. pylori gastritis more or less restricted to the gastric antrum in DU patients is associated with increased acid secretion. This is probably because gastritis increases release of the antral acid-stimulating hormone gastrin and diminished mucosal expression of the inhibitory peptide somatostatin. Bacterial products and inflammatory cytokines including TNFalpha may cause these changes in endocrine function. Gastritis involving the gastric corpus tends to diminish acid secretion, probably because bacterial products and cytokines including IL-1 inhibit parietal cells. Pharmacological inhibition of acid secretion increases corpus gastritis in H. pylori-infected subjects, so it is envisaged that gastric hypo-secretion of any cause might become self-perpetuating. H. pylori-associated mucosal atrophy will also contribute to acid hypo-secretion and is more likely in when the diet is high in salt or lacking in antioxidant vitamins. Data on gastric acid secretion in patients with esophagitis are limited but suggest that acid secretion is normal or slightly diminished. Nevertheless, H. pylori infection may be relevant to the management of esophagitis because: (i) H. pylori infection increases the pH-elevating effect of acid inhibiting drugs; (ii) proton pump inhibitors may increase the tendency of H. pylori to cause atrophic gastritis; and (iii) successful eradication of H. pylori is reported to increase the likelihood of esophagitis developing in patients who had DU disease. Points (ii) and (iii) remain controversial and more work is clearly required to elucidate the relationship between H. pylori, acid secretion, gastric mucosa atrophy and esophagitis.  相似文献   

18.
目的幽门螺杆菌被认为是诱发胃癌的最强的风险因素。幽门螺旋杆菌的毒性成分是可以增加癌症危险的cag分泌系统,它可以使cagA和肽聚糖易位进入宿主细胞,进而激活信号转导通路。AKT是磷脂酰肌醇3。激酶(PI3K)的目的蛋白,并在胃癌中被激活,但PI3K-AKT和具有潜在致癌性的幽门螺旋杆菌诱导的细胞反应之间的关系尚不清楚。方法我们揭示了介导幽门螺旋杆菌刺激的AKT活化和胃上皮细胞的这些生物学结果之间的分子通路。结果幽门螺旋杆菌以Scr和表皮生长因子受体依赖性方式增加PI3K-AKT的信号,是幽门螺旋杆菌诱导的细胞迁移不可或缺的。结论这些结果表明,PI3K-AKT信号调节幽门螺旋杆菌诱发的病理生理反应,从而降低癌变门槛。  相似文献   

19.
The extent of the regression of duodenal gastric metaplasia (DGM) after the eradication of Helicobacter pylori infection is controversial. Therefore, we decided to assess the degree of DGM before, sex weeks and one year after H. pylori eradication. 105 consecutive Helicobacter pylori positive patients with endoscopically proven duodenal ulcer, with DGM and Helicobacter pylori infection were recruited for this study. The diagnosis of Helicobacter pylori infection was based on CLO-test and histology, and DGM was assessed on four bulb biopsies taken before, sex weeks and one year after Helicobacter pylori eradication. Histological assessment of Helicobacter pylori associated gastritis was performed according to the Sydney classification. Follow up study on 98 patients before, six weeks and one year after the eradication of Helicobacter pylori showed that the mean extent of DGM did not change significantly after eradication and did not differ when compared with 14 patients with persisting infection. Our results show that the inflammatory process related to Helicobacter pylori does not play the main role in the development of DGM.  相似文献   

20.
The Sec machinery is one mechanism used by bacteria to translocate proteins across their cytoplasmic membrane. Most of the Sec components have been identified within the important gastric pathogen, Helicobacter pylori, however their functionality has not yet been demonstrated. Here we report the existence of putative homologues to the Sec components yajC (HP1450) and yidC (HP1551), and demonstrate the ability of the H. pylori secD (HP1550) and secG (HP1255) homologues to facilitate inner membrane translocation of the maltose-binding protein MalE, by complementation of the respective secretion-deficient Escherichia coli mutants, thus providing evidence of their functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号