首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conflicting reports on the heat resistance of Mycobacterium paratuberculosis prompted an examination of the effect of culture medium on this property of the organism. M. paratuberculosis was cultured in three types of media (fatty acid-containing medium 7H9-OADC (oleic acid-albumin-dextrose-catalase supplement) and glycerol-containing media WR-GD and 7H9-GD [glycerol-dextrose supplement]) at pH 6.0. M. paratuberculosis grown under these three culture conditions was then tested for heat resistance in distilled water at 65 degrees C. Soluble proteins and mycolic acids of M. paratuberculosis were evaluated by two-dimensional electrophoresis (2-DE) and thin-layer chromatography (TLC), respectively. The type of culture medium used significantly affected the heat resistance of M. paratuberculosis. The decimal reduction times at 65 degrees C (D(65 degrees C) values; times required to reduce the concentration of bacteria by a factor of 10 at 65 degrees C) for M. paratuberculosis strains grown in 7H9-OADC were significantly higher than those for the organisms grown in WR-GD medium (P < 0.01). When the glycerol-dextrose supplement of WR was substituted for the fatty acid supplement (OADC) in 7H9 medium (resulting in 7H9-GD), the D(65 degrees C) value was significantly lower than that for the organism grown in 7H9-OADC medium (P = 0.022) but higher than that when it was cultured in WR-GD medium (P = 0.005). Proteomic analysis by 2-DE of soluble proteins extracted from M. paratuberculosis grown without heat stress in the three media (7H9-OADC, 7H9-GD, and WR-GD) revealed that seven proteins were more highly expressed in 7H9-OADC medium than in the other two media. When the seven proteins were subjected to matrix-assisted laser desorption ionization-mass spectrometric analysis, four of the seven protein spots were unidentifiable. The other three proteins were identified as GroES heat shock protein, alpha antigen, and antigen 85 complex B (Ag85B; fibronectin-binding protein). These proteins may be associated with the heat resistance of M. paratuberculosis. Alpha antigen and Ag85B are both trehalose mycolyltransferases involved in mycobacterial cell wall assembly. TLC revealed that 7H9-OADC medium supported production of more trehalose dimycolates and cell wall-bound mycolic acids than did WR-GD medium. The present study shows that in vitro culture conditions significantly affect heat resistance, cell wall synthesis, and protein expression of M. paratuberculosis and emphasize the importance of culture conditions on in vitro and ex vivo studies to estimate heat resistance.  相似文献   

2.
Acid resistance of Mycobacterium paratuberculosis was examined as a function of growth conditions (i.e., in vitro growth medium and pH). M. paratuberculosis was cultured in either fatty acid-containing medium (7H9-OADC) or glycerol-containing medium (WR-GD or 7H9-GD) at two culture pHs (pHs 6.0 and 6.8). Organisms produced in these six medium and pH conditions were then tested for resistance to acetate buffer at pHs 3, 4, 5, and 6 at 20°C. A radiometric culture method (BACTEC) was used to quantify viable M. paratuberculosis cell data at various acid exposure times, and D values (decimal reduction times, or the times required to kill a 1-log10 concentration of bacteria) were determined. Soluble proteins of M. paratuberculosis grown under all six conditions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to identify proteins that may be associated with acid resistance or susceptibility. The culture medium affected growth rate and morphology: thin floating sheets of cells were observed in 7H9-OADC versus confluent, thick, waxy, and wrinkled pellicles in WR-GD. Culture medium pH affected growth rate (which was highest at pH 6.0), but it had little or no effect on D values for M. paratuberculosis at any test pH. When grown in 7H9-OADC, M. paratuberculosis was more acid resistant at all test pHs (higher D values) than when grown in WR-GD. Glycerol appeared to be the culture medium component most responsible for lower levels of M. paratuberculosis acid resistance. When glycerol was substituted for OADC in the 7H9 medium, D values were significantly lower than those of 7H9-OADC-grown M. paratuberculosis and were approximately the same as those for M. paratuberculosis grown in WR-GD medium. Comparison of the SDS-PAGE protein profiles for M. paratuberculosis cultures grown in 7H9-OADC, WR-GD, or 7H9-GD medium revealed that increased expression of 34.2- and 14.0-kDa proteins was associated with higher levels of acid resistance of M. paratuberculosis grown in 7H9-OADC medium and that 56.6- and 41.3-kDa proteins were associated with lower levels of acid resistance. This is the first report showing that in vitro culture conditions significantly affect growth characteristics, acid resistance, and protein expression of M. paratuberculosis, and the results emphasize the importance of culture conditions for in vitro susceptibility studies.  相似文献   

3.
Conflicting reports on the heat resistance of Mycobacterium paratuberculosis prompted an examination of the effect of culture medium on this property of the organism. M. paratuberculosis was cultured in three types of media (fatty acid-containing medium 7H9-OADC (oleic acid-albumin-dextrose-catalase supplement) and glycerol-containing media WR-GD and 7H9-GD [glycerol-dextrose supplement]) at pH 6.0. M. paratuberculosis grown under these three culture conditions was then tested for heat resistance in distilled water at 65°C. Soluble proteins and mycolic acids of M. paratuberculosis were evaluated by two-dimensional electrophoresis (2-DE) and thin-layer chromatography (TLC), respectively. The type of culture medium used significantly affected the heat resistance of M. paratuberculosis. The decimal reduction times at 65°C (D65°C values; times required to reduce the concentration of bacteria by a factor of 10 at 65°C) for M. paratuberculosis strains grown in 7H9-OADC were significantly higher than those for the organisms grown in WR-GD medium (P < 0.01). When the glycerol-dextrose supplement of WR was substituted for the fatty acid supplement (OADC) in 7H9 medium (resulting in 7H9-GD), the D65°C value was significantly lower than that for the organism grown in 7H9-OADC medium (P = 0.022) but higher than that when it was cultured in WR-GD medium (P = 0.005). Proteomic analysis by 2-DE of soluble proteins extracted from M. paratuberculosis grown without heat stress in the three media (7H9-OADC, 7H9-GD, and WR-GD) revealed that seven proteins were more highly expressed in 7H9-OADC medium than in the other two media. When the seven proteins were subjected to matrix-assisted laser desorption ionization-mass spectrometric analysis, four of the seven protein spots were unidentifiable. The other three proteins were identified as GroES heat shock protein, alpha antigen, and antigen 85 complex B (Ag85B; fibronectin-binding protein). These proteins may be associated with the heat resistance of M. paratuberculosis. Alpha antigen and Ag85B are both trehalose mycolyltransferases involved in mycobacterial cell wall assembly. TLC revealed that 7H9-OADC medium supported production of more trehalose dimycolates and cell wall-bound mycolic acids than did WR-GD medium. The present study shows that in vitro culture conditions significantly affect heat resistance, cell wall synthesis, and protein expression of M. paratuberculosis and emphasize the importance of culture conditions on in vitro and ex vivo studies to estimate heat resistance.  相似文献   

4.
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20 degrees C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log(10) concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 10(3) cells of M. avium subsp. paratuberculosis per ml.  相似文献   

5.
Streptococcus bovis H13/1 was grown anaerobically at pHs between 5.0 and 6.5 in a glucose-limited chemostat at a dilution rate of 0.05/h. The growth yield and the production of acetate, ethanol and formate decreased at pHs less than 6.5 whereas the production of lactate increased at the lower pH values. When a culture was subjected to sequential pH changes, growth yield and fermentation products were influenced not only by the pH existing in the culture medium but also by the metabolic activity of the cells at the preceding pHs in the sequence. The results are discussed in relation to the mechanisms available for the maintenance of pH homeostasis and for the metabolic control of fermentation pathways in Strep. bovis.  相似文献   

6.
Streptococcus bovis H13/1 was grown anaerobically at pHs between 5.0 and 6.5 in a glucose-limited chemostat at a dilution rate of 0.05/h. The growth yield and the production of acetate, ethanol and formate decreased at pHs less than 6.5 whereas the production of lactate increased at the lower pH values. When a culture was subjected to sequential pH changes, growth yield and fermentation products were influenced not only by the pH existing in the culture medium but also by the metabolic activity of the cells at the preceding pHs in the sequence. The results are discussed in relation to the mechanisms available for the maintenance of pH homeo-stasis and for the metabolic control of fermentation pathways in Strep. bovis.  相似文献   

7.
UV light inactivation of Mycobacterium avium subsp. paratuberculosis in Middlebrook 7H9 broth and whole and semiskim milk was investigated using a laboratory-scale UV machine that incorporated static mixers within UV-penetrable pipes. UV treatment proved to be less effective in killing M. avium subsp. paratuberculosis suspended in milk (0.5- to 1.0-log(10) reduction per 1,000 mJ/ml) than that suspended in Middlebrook 7H9 broth (2.5- to 3.3-log(10) reduction per 1,000 mJ/ml). The FASTPlaqueTB phage assay provided more rapid enumeration of surviving M. avium subsp. paratuberculosis (within 24 h) than culture on Herrold's egg yolk medium (6 to 8 weeks). Despite the fact that plaque counts were consistently 1 to 2 log(10) lower than colony counts throughout the study, UV inactivation rates for M. avium subsp. paratuberculosis derived using the phage assay and culture results were not significantly different (P = 0.077).  相似文献   

8.
Background. Helicobacter pylori survives transient exposure to extreme acid prior to adherence and growth on the gastric epithelium at neutral pH.
Materials and Methods. The effect of pH stress on protein profiles of H. pylori was observed using two-dimensional gel electrophoresis (2-D gels). H. pylori 26695 was grown microaerobically in tryptone-yeast extract broth, 3% fetal bovine serum. Growth in acid alkalinized the medium, whereas growth in base caused acidification. For 2-D gel analysis of protein profiles, cultures were grown in media buffered at pH 5.7 and at pH 7.5.
Results. Under all pH conditions, the most abundant proteins observed were the urease structural subunit UreB and the chaperonin GroEL. Growth in acid significantly increased the abundance of UreB. Thus, urease expression is not completely constitutive, as reported previously, but shows regulation by pH. Another protein observed only at low pH was identified as mammalian apolipoprotein A-I, possibly taken up by H. pylori from bovine serum in the growth medium. This finding, if confirmed, suggests that uptake of high-density lipoprotein from the human host may facilitate acquisition of cholesterol, required for formation of the unique cholesteryl glucosides in the membrane of H. pylori. In growth above pH 7, three stress proteins were induced: GroES (HspA), GroEL (HspB), and the antioxidant AhpC homolog TsaA. In addition, N-terminal sequence analysis identified five additional proteins that had not previously been reported on 2-D gels of H. pylori (FMN, SodB, TrxB, TsaA, and Tsr).
Conclusions. In summary, our 2-D gel study reveals expression of several proteins dependent on growth pH.  相似文献   

9.
This study aimed to identify proteins secreted by Mycobacterium bovis into culture medium at different stages of bacterial growth. A field strain of M. bovis was grown in Middlebrook 7H9 media and culture supernatant was collected at three-time points representing three different phases of growth (early exponential, late exponential, and stationary phases). Supernatants were double filtered, digested by trypsin and analyzed by LC-MS/MS. The study found 15, 21, and 16 proteins in early, mid and late growth phases, respectively. In total, 22 proteins were identified, 18 of which were reported or predicted to have a cell wall or extracellular localization. To our knowledge, this is the first study to identify proteins secreted into the culture medium by a field strain of M. bovis in three different stages of growth. The dataset generated here provides candidate proteins with the potential for the development of serological diagnostic reagents or vaccine for bovine tuberculosis. Data are available via ProteomeXchange with identifier PXD017817.  相似文献   

10.
The growth rate of Mycobacterium avium subsp. paratuberculosis was assessed by different methods in 7H9 medium supplemented with OADC (oleic acid, albumin, dextrose, catalase), Tween 80, and mycobactin J. Generation times and maximum specific growth rates were determined by wet weight, turbidometric measurement, viable count, and quantitative PCR (ParaTB-Kuanti; F57 gene) for 8 M. avium subsp. paratuberculosis strains (K10, 2E, 316F, 81, 445, 764, 22G, and OVICAP 49). Strain-to-strain differences were observed in growth curves and calculated parameters. The quantification methods gave different results for each strain at specific time points. Generation times ranged from an average of 1.4 days for viable count and qPCR to approximately 10 days for wet weight and turbidometry. The wet-weight, turbidometry, and ParaTB-Kuanti qPCR methods correlated best with each other. Generally, viability has been assessed by viable count as a reference method; however, due to M. avium subsp. paratuberculosis clumping problems and the presence of noncultivable M. avium subsp. paratuberculosis cells, we conclude that qPCR of a single-copy gene may be used reliably for rapid estimation of M. avium subsp. paratuberculosis bacterial numbers in a sample.  相似文献   

11.
M Kitada  K Onda    K Horikoshi 《Journal of bacteriology》1989,171(4):1879-1884
The pH homeostasis and the sodium/proton antiport system have been studied in the newly isolated alkalophilic Bacillus sp. strain N-6, which could grow on media in a pH range from 7 to 10, and in its nonalkalophilic mutant. After a quick shift in external pH from 8 to 10 by the addition of Na2CO3, the delta pH (inside acid) in the cells of strain N-6 was immediately established, and the pH homeostatic state was maintained for more than 20 min in an alkaline environment. However, under the same conditions, the pH homeostasis was not observed in the cells of nonalkalophilic mutant, and the cytoplasmic pH immediately rose to pH 10. On the other hand, the results of the rapid acidification from pH 9 to 7 showed that the internal pH was maintained as more basic than the external pH in a neutral medium in both strains. The Na+/H+ antiport system has been characterized by either the effect of Na+ on delta pH formation or 22Na+ efflux in Na+-loaded right-side-out membrane vesicles of strain N-6. Na+- or Li+-loaded vesicles exhibited a reversed delta pH (inside acid) after the addition of electron donors (ascorbate plus tetramethyl-p-phenylenediamine) at both pH 7 and 9, whereas choline-loaded vesicles generated delta pHs of the conventional orientation (inside alkaline). 22Na+ was actively extruded from 22Na+-loaded vesicles whose potential was negative at pH 7 and 9. The inclusion of carbonyl cyanide m-chlorophenylhydrazone inhibited 22Na+ efflux in the presence of electron donors. These results indicate that the Na+/H+ antiport system in this strain operates electrogenically over a range of external pHs from 7 to 10 and plays a role in pH homeostasis at the alkaline pH range. The pH homeostasis at neutral ph was studied in more detail. K+ -depleted cells showed no delta pH (acid out) in the neutral conditions in the absence of K+, whereas these cells generated a delta pH if K+ was present in the medium. This increase of internal pH was accompanied by K+ uptake from the medium. These results suggest that electrogenic K+ entry allows extrusion of H+ from cells by the primary proton pump at neutral pH.  相似文献   

12.
Induction of acid resistance (habituation) in Escherichia coli at pH 5·0 took ca 5 min in broth at 37°C and 30–60 min in minimal medium. Induction occurred at a range of pH values from 4·0 to 6·0; it was dependent on continuing protein and RNA synthesis but substantial acid resistance appeared in the presence of nalidixic acid. Acid resistance was long-lasting; organisms grown at pH 5·0 retained most of their resistance after 2 h growth at pH 7·0. Organisms grown at pH 5·0 showed increased synthesis of a number of cytoplasmic proteins compared with the level in cells grown at pH 7·0. DNA repair-deficient strains carrying recA, uvrA or polAl mutations were more acid-sensitive than the repair-proficient parents but were able to habituate at pH 5·0. Organisms grown at pH 5·0 transferred the ColV plasmid much more effectively at acid pH than did those grown at pH 7·0 and habituated recipients appeared better able to repair incoming acid-damaged plasmid DNA than did those that were non-habituated. Induction of acid resistance at pH 5·0 may be significant for the survival of organisms exposed to periodic discharges of acid effluent in the aquatic environment and habituation may also allow plasmid transfer and repair of acid-damaged plasmid DNA during or after such exposure.  相似文献   

13.
The aim of the present work was to evaluate the influence of the culture medium on the resistance and response of Mycobacterium bovis BCG to reactive nitrogen intermediates, in vitro. BCG was grown in Sauton, Dubos or Middlebrook 7H9 medium and exposed to sodium nitroprusside (SNP) for up to 7 days. The percentage of bacilli that survived was significantly lower in Middlebrook 7H9 than in Sauton or Dubos medium. Addition of SNP to Middlebrook 7H9 caused an increase in the RedOx potential in either the absence or the presence of BCG, while addition of the compound to Sauton medium gave rise to an increase in the RedOx potential only in the absence of bacteria, whereas a decrease in the RedOx potential was observed in the presence of BCG. The resistance of BCG to SNP in the different media did not correlate with the concentration of peroxynitrite in culture supernatants. BCG grown in different media showed a differential protein expression pattern, as assessed by two-dimensional gel electrophoresis. Exposure of BCG to sub-lethal concentrations of SNP in Middlebrook 7H9, but not in Sauton medium, revealed a differential expression of at least 38 protein species. Altogether these results demonstrate that the growth medium may have a remarkable influence on the resistance and the response of BCG to SNP and suggest that the different resistance of BCG in the two media is unlikely to be due to a differential antioxidant effect of the medium itself.  相似文献   

14.
T Miwa  H Esaki  J Umemori    T Hino 《Applied microbiology》1997,63(6):2155-2158
Batch culture experiments showed that permeabilized cells and membranes of Ruminococcus albus and Fibrobacter succinogenes, acid-intolerant celluloytic bacteria, have only one-fourth to one-fifth as much H(+)-ATPase as Megasphaera elsdenii and Streptococcus bovis, which are relatively acid tolerant. Even in the cells grown in continuous culture at pH 7.0, the acid-intolerant bacteria contained less than half as much H(+)-ATPase as the acid-tolerant bacteria. The amounts of H(+)-ATPase in the acid-tolerant bacteria were increased by more than twofold when the cells were grown at the lowest pH permitting growth, whereas little increase was observed in the case of the acid-intolerant bacteria. These results indicate that the acid-intolerant bacteria not only contain smaller amounts of H(+)-ATPase at neutral pH but also have a lower capacity to enhance the level of H(+)-ATPase in response to low pH than the acid-tolerant bacteria. In addition, the H(+)-ATPases of the acid-intolerant bacteria were more sensitive to low pH than those of the acid-tolerant bacteria, although the optimal pHs were similar.  相似文献   

15.
The effects of dissolved oxygen concentration and pH on the growth of Brevibacterium linens CNRZ 918 and its production of methanethiol from l-methionine were investigated. Optimal specific methanethiol production was obtained at 25% saturation of dissolved oxygen and at a pH between 8 and 9, whereas optimal cell growth occurred at 50% oxygen saturation and when the pH was maintained constantly at 7. Methanethiol production by nonproliferating bacteria required the presence of l-methionine (7 mM) in the culture medium. This was probably due to the induction of enzyme systems involved in the process. The intracellular concentration of l-methionine seemed to play a key role in this process. B. linens CNRZ 918 tolerated alkaline pHs with a maximal growth pH of approximately 9. Its orange pigmentation seemed to depend on the presence of l-methionine in the culture medium and on the concentration of dissolved oxygen.  相似文献   

16.
Map location of the pcbA mutation and physiology of the mutant.   总被引:9,自引:7,他引:2       下载免费PDF全文
The obligate aerobe Cowpea Rhizobium sp. strain 32H1 in axenic culture is able to fix N2 when grown under 0.2% O2 but not when grown under 21% O2. It was, therefore, of interest to investigate ATP synthesis in these cells grown under the two conditions. When respiring in buffers having pHs ranging from 6 to 8.5, cells grown under either O2 tension maintained an intracellular pH more alkaline than the exterior. The transmembrane chemical gradient of H+ (delta pH) was essentially the same under both conditions of growth, decreasing from ca. 90 mV at medium pH 6 to ca. 30 mV at pH 8.5. However, the transmembrane electrical gradient (delta psi) was significantly higher in cells grown under 21% O2 (150 to 166 mV) than in cells grown under 0.2% O2, the latter being 16 mV at pH 6 and increasing to 88 mV at pH 8.5. Therefore, the proton motive force of 21% O2-grown cells ranged from 237 mV at external pH 6 to 185 mV at pH 8.5, compared with a proton motive force of 114 to 121 mV in the 0.2% O2-grown cells. The cells grown in 0.2% O2 had the same proton motive force whether tested at 21 or at 0.2% O2. The phosphorylation potential, calculated from the intracellular ATP, ADP, and Pi concentrations, was 424 mV in the 21% O2-grown cells and 436 mV in the 0.2% O2-grown cells. Thus, the 21% O2-grown cells translocated 1.8 to 2.3 H+/ATP synthesized by the H+-ATPase, whereas the H+/ATP ratio for 0.2% O2-grown cells was 3.7 to 3.8.  相似文献   

17.
Enteric bacteria having a high content of cyclopropane fatty acids steeply increase their synthesis when grown on insufficiently propitious culture media (meat-peptone agar or modified Drobot'ko synthetic medium) as compared with bacteria grown under more favourable conditions (meat-peptone broth). Simultaneously, a decrease in monounsaturated fatty acids and increase in palmitic acid are observed. One of the main factors underlying the change in the proportion of fatty acids in bacteria grown on synthetic medium is an increase in medium pH in the process of their growth. Enteric bacteria containing minute amounts/or not containing cyclopropane fatty acids at all (under the experimental conditions used) change their fatty-acid profile little if the culture medium is changed. When grown under insufficiently favourable conditions, these bacteria mainly display an enhanced content of palmitic acid and a lowered content of octadacenoic acid as compared with bacteria grown under more favourable conditions. Of the culture media used, meat-peptone broth, which affords the most favourable conditions for eneteric bacteria growth, is the most suitable medium for obtaining data of taxonomic value.  相似文献   

18.
Fusarium venenatum A3/5 was grown in iron-restricted batch cultures and iron-limited chemostat cultures to determine how environmental conditions affected siderophore production. The specific growth rate in iron-restricted batch cultures was 0.22 h(-1), which was reduced to 0.12 h(-1) when no iron was added to the culture. D(crit) in iron-limited chemostat culture was 0.1 h(-1). Siderophore production was correlated with specific growth rate, with the highest siderophore production occurring at D=0.08 h(-1) and the lowest at D=0.03 h(-1). Siderophore production was greatest at pH 4.7 and was significantly reduced at pHs above 6.0. Siderophore production could be enhanced by providing insoluble iron instead of soluble iron in continuous flow cultures.  相似文献   

19.
The influence of pH on the denitrification activity of a continuous culture of Paracoccus denitrificans was studied in relation to the presence of nitrite. After a transition from aerobic to anaerobic conditions at the suboptimal pH of 6.8, P. denitrificans was not able to build up a functional denitrification pathway. Nitrite accumulated in the medium as the predominant denitrification product. Although the nitrite reductase gene was induced properly, the enzyme could not be detected at sufficient amounts in the culture. These observations indicate that either translation was somehow inhibited, or once synthesized nitrite reductase was inactivated, possibly by the high concentrations of nitrous acid (HNO2. Interestingly, when a P. denitrificans culture which was grown to steady-state under anaerobic conditions was then exposed to suboptimal pHs, cells exhibited a reduced overall denitrification activity, but neither nitrite nor any other denitrification intermediate accumulated.  相似文献   

20.
Induction of acid resistance (habituation) in Escherichia coli at pH 5.0 took ca 5 min in broth at 37 degrees C and 30-60 min in minimal medium. Induction occurred at a range of pH values from 4.0 to 6.0; it was dependent on continuing protein and RNA synthesis but substantial acid resistance appeared in the presence of nalidixic acid. Acid resistance was long-lasting; organisms grown at pH 5.0 retained most of their resistance after 2 h growth at pH 7.0. Organisms grown at pH 5.0 showed increased synthesis of a number of cytoplasmic proteins compared with the level in cells grown at pH 7.0. DNA repair-deficient strains carrying recA, uvrA or polA1 mutations were more acid-sensitive than the repair-proficient parents but were able to habituate at pH 5.0. Organisms grown at pH 5.0 transferred the ColV plasmid much more effectively at acid pH than did those grown at pH 7.0 and habituated recipients appeared better able to repair incoming acid-damaged plasmid DNA than did those that were non-habituated. Induction of acid resistance at pH 5.0 may be significant for the survival of organisms exposed to periodic discharges of acid effluent in the aquatic environment and habituation may also allow plasmid transfer and repair of acid-damaged plasmid DNA during or after such exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号