首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
外泌蛋白易于分离纯化,有利于以较低的生产成本获得大量的目标蛋白,因此分泌表达是一种理想的外源基因的表达方式。芽胞杆菌由于其具有较好的分泌能力,被认为是一种理想的表达外源基因的宿主。到目前为止已有大量来源于不同生物的外源基因在芽胞杆菌中实现了高效分泌表达。但是芽胞杆菌的分泌表达系统仍然存在很多问题,如对某些目的蛋白的分泌量低等,限制了其作为“细胞工厂”生产目标蛋白的应用。综述了芽胞杆菌的外泌系统,分析了芽胞杆菌分泌蛋白过程中的限制因素,并总结了相关的解决方案。  相似文献   

2.
Kil蛋白介导的大肠杆菌外泌表达系统   总被引:2,自引:0,他引:2  
利用大肠杆菌素释放基因(kil)能有效地增加细菌外膜通透性促进周质蛋白外源的原理构建了含kil基因的大肠杆菌外泌表达系统,将大肠杆菌本身的周质分泌蛋白β-内酰胺酶和异源周质分泌蛋白点状产气单胞菌脯氨酰内肽酶作为报告蛋白,观察Kil蛋白对这两种通常极少分泌到胞外的周质蛋白胞外分泌的促进作用,我们的研究显示:kil基因表达时,β-内酰胺酶的总活性较对照组提高1倍,胞外分泌活性较对照组提高近4倍,脯氨酰内肽酶的总活性较对照组提高0.8倍,胞外分泌活性较对照组提高3倍。  相似文献   

3.
人转化生长因子β1在大肠杆菌中的分泌表达   总被引:1,自引:0,他引:1  
为了研究双体形式生长因子的原核基因工程,尝试了人转化生长因子β1(hTGFβ1)基因的分泌表达.通过缺失突变,构建了能表达具有天然一级结构的hTGFβ1单体蛋白的周质分泌表达质粒.采用双顺反子表达系统,使TGFβ1在周质中获得了高效可溶性表达.研究了改善转运通路对重组蛋白分泌表达的影响,发现共表达σ32基因和dsbA基因,可促进周质中TGFβ1双体分子的形成;而共表达secE/Y基因对TGFβ1的分泌表达则没有明显影响.通过共表达kil基因,使TGFβ1在胞外培养基中获分泌表达,并在胞外折叠、组装形成具有生物活性的双体分子  相似文献   

4.
曹蕾  唐晓峰 《生物资源》2020,42(4):375-381
大肠杆菌的蛋白质表达平台在工业和农业中得到了广泛应用,使目的蛋白质表达后释放至胞外更有利于大规模的生产。目前,已经研究出许多改善外源蛋白胞外含量的方法。本文从蛋白质分泌机制、菌株、信号肽、载体和培养条件的选择和优化改造、密码子的优化和蛋白质跨膜转运过程的改善等方面总结了提高大肠杆菌表达外源蛋白的胞外含量的各种策略,指出多因素协同作用才能更全面地提升蛋白质的胞外产量。  相似文献   

5.
以来自于谷氨酸棒杆菌内源AH6启动子和5′UTR及其前38 bp结合合适的Shine-Dalgarno (SD)序列,构建双顺反子表达载体对木聚糖酶进行表达。为了能够实现分泌表达,选取了来自谷氨酸棒杆菌的两种分泌途径的信号肽,分别为Tat型的CgR0949及Sec型的CspB信号肽。在实现分泌表达之后,对其进行5 L发酵罐的扩大培养以提高分泌量。并对纯化的木聚糖酶进行了部分酶学性质的研究,包括最适催化pH及酸碱耐受性;最适催化温度及热稳定性。结果表明:在上述表达体系中,以CgR0949为信号肽木聚糖酶不能分泌到胞外;木聚糖酶能在CspB信号肽的引导下分泌到胞外,分泌表达量为486.2 U/mL。木聚糖酶的分泌量在5 L发酵罐水平上达到1 648.7 U/mL,是摇瓶培养的3.4倍。该木聚糖酶的最适反应pH为4.5,最适温度为45℃;在pH 4–11范围内4℃处理24 h酶活保持在80%以上;在50℃前处理15 min酶活保持在95%以上,超过60℃则酶活迅速下降至20%及其以下。上述结果表明,谷氨酸棒杆菌内源元件能有效用于木聚糖酶的分泌表达,扩大培养能进一步提升木聚糖酶的分泌量。该双顺反子表达体系能为外源蛋白在谷氨酸棒杆菌中的分泌表达提供一种可用的工具。此外,通过酶学性质的研究可进一步提高木聚糖酶的催化效率。  相似文献   

6.
内皮祖细胞(endothelial progenitor cells,EPCs)是一种具备较强分化及增殖能力的细胞,并有良好的血管生成作用.目前研究表明EPCs旁分泌的胞外囊泡(extracellular vesicles,EVs)可独立作为一种生物活性物质在细胞间传递信息并参与血管生成的过程.EVs大致可以分成3 类...  相似文献   

7.
目的:提高毕赤酵母工程菌P.pastoris-CBHⅡ液体发酵产纤维二糖水解酶(CBHⅡ)的能力。方法:分别构建了用于胞外及胞内表达透明颤菌血红蛋白(VHb)基因的毕赤酵母重组表达质粒pPICZαA-vhb与pPICZαA(-s)-vhb。通过电转化将两种质粒转化巴氏毕赤酵母重组菌体P.pastoris-CBHⅡ菌株,经过筛选分别获得可正确表达具有生物活性的VHb蛋白的重组菌株P.pastoris-CBHⅡ-vhb(胞内表达VHb)及P.pastoris-CBHⅡ-vhb(-s)(胞外表达VHb)。结果:摇瓶发酵实验表明,血红蛋白在贫氧条件下可促进CBHⅡ的分泌表达,培养液上清的CMC酶活分别从出发菌株P.pastoris-CBHⅡ的1.81U/ml提高到2.04U/ml(胞内表达VHb)与1.93U/ml(胞外表达VHb)。VHb蛋白胞内表达菌株比胞外表达菌株效果更明显。  相似文献   

8.
芽胞杆菌属具有良好的蛋白表达和分泌能力,在工业酶的生产中被广泛应用,是理想的工业宿主菌,但实现蛋白分泌表达的普遍高效性还存在许多瓶颈。本文综述了芽胞杆菌的蛋白分泌表达策略,从启动子、信号肽、分泌途径、宿主和培养条件这5个方面总结了提高芽胞杆菌中分泌表达重组蛋白的方法,对芽胞杆菌高效生产工业酶有一定的参考价值,最后展望了优化芽胞杆菌分泌表达的研究方向,各种新型生物技术的发展必将推进芽胞杆菌在分泌表达领域有更深入的应用。  相似文献   

9.
大肠杆菌是表达重组蛋白的常见宿主之一。重组蛋白分泌到周质空间或胞外培养基中较之在胞内以包含体形式表达有许多优势。主要讨论大肠杆菌Ⅰ、Ⅱ型分泌机制,并总结近年来在提高重组蛋白分泌表达的策略方面取得的进展。  相似文献   

10.
李彬  吴敬  陈坚 《工业微生物》2011,41(3):54-59
为了筛选得到利于浸麻类芽孢杆菌Paenibacillus macerans α-环糊精葡萄糖基转移酶(α-CGT酶)分泌表达的信号肽,提高α-CGT酶的分泌表达量,本研究考察了大肠杆菌中外源蛋白分泌表达常用的OmpA、PelB、OmpT和Endoxylanase四个信号肽对重组α-CGT酶在大肠杆菌中胞外表达的影响.在...  相似文献   

11.
已开发的商业上可行的活表达系统中使用的微生物越来越多。Alleix公司(多伦多,安大略)利用丝状真菌寄主曲霉属(Aspergillus)研究出两种新的新型胞外蛋白表达系统,包括适用于黑曲霉(一种很有用的工业用菌种)和无冠构巢曲霉(一种遗传特征非常清楚的寄主)的表达-分泌载体。据该公司报道,用此种黑曲霉技术特别适合于异种蛋白,尤其是酶的分泌。本技术的基础是曲霉属能高水平地分泌所需要的产品的这种非常出色的能力。这两种系统包括与无冠构巢曲霉中的一些基因(与乙醇利用有关)和黑曲霉中得到充分  相似文献   

12.
丝状真菌由于其胞外蛋白分泌的高效性,成为生产酶制剂的高效细胞工厂.近年来针对真核生物胞外蛋白分泌途径的研究发现,丝状真菌蛋白的分泌途径相比其他真核生物具有高效分泌的特性.为了研究丝状真菌高效分泌的机制,本文总结了近年来丝状真菌分泌途径的最新研究进展,并且选取了分泌途径中关键环节的数种蛋白进行分析,通过与其他真核生物相关蛋白进行结构与序列比对,推测了丝状真菌胞外蛋白高效分泌的可能机制.  相似文献   

13.
漆酶在食用菌生长过程中具有降解木质素、影响子实体形成等重要生理功能,而营养条件会显著影响酶的形成。本研究克隆了杏鲍菇和松杉灵芝部分漆酶基因,比较分析了不同营养条件对漆酶基因表达量及胞外酶活的影响。结果表明,两种食用菌漆酶基因序列差异较大,蛋白同源性低;杏鲍菇在高N低C、高无机盐、完全培养基中胞外漆酶酶活较高,而在转录水平基因表达量高低分别为低N、完全、高N低C培养基;加入有机碳如蔗渣在促进松杉灵芝漆酶基因的转录同时可提高胞外酶活,同时Cu2+可诱导漆酶的分泌,但无诱导漆酶转录作用。C、N比例的调整对2种食用菌漆酶基因的表达与胞外酶活影响具有明显差异,高氮源可促进菌株漆酶的分泌。该结果为进一步探讨漆酶基因调控机制及其生物学功能提供理论基础,同时为改变营养条件提高食用菌胞外漆酶酶活,加强食用菌胞外漆酶的应用提供理论依据。  相似文献   

14.
Neurturin是神经营养因子家族成员,研究发现体外表达的重组Neurturin能够促进多巴胺能神经元的存活,对帕金森氏病的基因治疗有重要意义。但有研究指出野生型Neurturin在细胞中不能完成加工进而不能被分泌到胞外。因此实验对野生型Neurturin进行改造,将NGF的信号肽与Neurturin的成熟肽进行拼接,形成一种嵌合的NGF/NTN基因,并将该基因插入重组腺病毒基因组中,在AD-293细胞中包装获得重组腺病毒。通过免疫荧光和Western blotting证实Neurturin能够在胞内表达,并且能够对其进行加工最后分泌至胞外。最后通过鸡胚背根神经节培养实验证明该嵌合基因能够表达具有明显活性的Neurturin。  相似文献   

15.
覃晓琳  刘朝奇  郑兰英 《生物技术》2010,20(3):95-97,F0004
根据酵母表达系统在表达外源蛋白方面的独特优势,利用酵母表达系统高效分泌并纯化具有生物学活性的蛋白质,已受到广泛关注。信号肽在蛋白质的分泌中起着重要作用,可引导蛋白分泌至胞外,大大提高蛋白的表达量,在工业化生产外源蛋白的纯化工艺方面具有重要意义。该文将从酵母表达系统中对信号肽的选择、改造、偏爱密码子和增强子的应用等几个方面进行优化的探讨,以提高蛋白质在酵母系统中的分泌效率。  相似文献   

16.
具有分泌蛋白能力的短芽孢杆菌的筛选及鉴定   总被引:4,自引:0,他引:4  
短芽孢杆菌(Bacillus brevis)具有分泌蛋白能力强和胞外蛋白酶活性低的特性,是分泌表达外源蛋白较理想的宿主。为获得分泌表达系统较理想的宿主菌,建立了短芽孢杆菌高效筛选模型,从800余株细菌中筛得8株具有高蛋白分泌能力且没有胞外蛋白酶活性的候选菌。经多相分类学初步鉴定其中5株为短芽孢杆菌。  相似文献   

17.
目前,在微生物遗传工程中应用的表达载体大多是指导目的基因在宿主的胞质中表达,尽管外源蛋白的产量可达菌体总蛋白的50%以上,但同时也存在不少缺点:(1)高水平表达的外源蛋白容易发生沉降、凝聚,难以重新折叠为正确构象,不易获得有功能的产品;(2)产品纯化工艺复杂;(3)对宿主有毒性作用,导致表达体系不稳定;(4)外源蛋白易被胞内蛋白酶降解。这使得微生物遗传工程的应用受到很大限制。 如果能使在胞质表达的外源蛋白分泌到胞外,既可纠正由子高表达所引起的种种不利。近十年开展了对E.coli中蛋白质定位的深入研究。E.coli的蛋白质最初都是在胞质合成的,通过分泌而定位于膜或周质。例如外膜蛋白A(OmpA)先以前体形式在胞质合成,然后借助信号肽的作用穿过内膜,在分泌过程中信号肽被切除成的成熟蛋白定位子外膜。现在许多作者利用E.coli分泌蛋白的信号肽序列与目的基因相融合,将外源蛋白分泌出胞质。如用碱性磷酸酶(phoA)的信号肽分泌人α干扰素,使产物的稳定性和产量都有所提高,并且可通过简单的物理技术得到产品。E.coli溶血素通过特殊的分泌机制穿越细胞膜分泌至培养基,现已尝试用该系统构建表达载体。 本文从信号肽的作用、成熟蛋白对分泌的影响、宿主在分泌中的作用、E.coli溶血素的分泌以及外源蛋白在E.coli中的分泌等几方面综述近几年研究E.coli蛋白质分泌的进展。  相似文献   

18.
以pPIC9为模板,通过PCR扩增获得酿酒酵母的α-交配因子(α-factor),并克隆至酿酒酵母胞内表达载体pYES2/CT中,构建了一种新型酿酒酵母附加型分泌表达载体pYES2/CT/α-factor(pYCα)。再将甘露聚糖酶基因(mannase,man)通过酶切、连接克隆至pYCα的α-factor的下游,构建了pYCα-man重组载体检验pYCα的分泌性能和稳定性。结果显示α-factor可引导甘露聚糖酶基因在胞外分泌表达,在曲利本兰培养基上形成明显的水解圈,进一步分析重组菌胞外和胞内酶活,结果显示对照INVSc1/pYCα的两种酶活都未检测到,而INVSc1/pYCα-man具有明显的胞外酶活,未检测到胞内酶活,说明构建的pYCα具有良好的分泌性能;稳定性实验表明重组质粒连续培养150 h仍具有良好的稳定性。  相似文献   

19.
【目的】通过优化表达条件,提高嗜热环糊精葡萄糖基转移酶(CGTase)的可溶性表达和胞外酶活性。【方法】构建含cgt基因的重组表达质粒p ET-28a(+)-omp A-cgt,筛选最适诱导温度,并构建5种分子伴侣共表达系统(p KJE8、p KJE7、p Gro7、p Tf16和p G-Tf2,5种分子伴侣质粒分别与重组表达质粒p ET-28a(+)-omp A-cgt共表达),筛选最适分子伴侣质粒,优化共表达条件。【结果】通过SDS-PAGE分析和测定胞外酶活,CGTase基因在大肠杆菌中实现表达,且具有一定量的重组CGTase分泌至胞外;25°C诱导时CGTase的可溶性表达和在胞外上清中的酶活都最高;分子伴侣质粒p KJE8使酶的胞外活性提高了48.6%,效果最为显著;当L-阿拉伯糖浓度为0.5 g/L时,分子伴侣质粒p KJE8使酶的胞外活性提高了68.5%。【结论】通过优化表达条件及使用分子伴侣共表达系统提高了环糊精葡萄糖基转移酶的可溶性表达和胞外酶活,为该酶进一步相关研究奠定了基础。  相似文献   

20.
大肠杆菌是表达重组蛋白最常用的宿主之一。利用大肠杆菌分泌途径胞外表达重组蛋白具有可促进蛋白正确折叠,有效减少包涵体形成,简化纯化工序等诸多优势,近年来备受关注。其中,大肠杆菌Ⅰ型分泌途径具有分泌表达速度快,蛋白活性高,对宿主代谢无影响等特点,是目前应用最广泛的分泌途径之一。综述了大肠杆菌Ⅰ型分泌系统的元件组成和分泌机理及提高Ⅰ型分泌系统蛋白表达量的有效策略,为重组蛋白生产应用提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号