首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
ABSTRACT: Lockie, RG, Murphy, AJ, Scott, BR, and Janse de Jonge, XAK. Quantifying session ratings of perceived exertion for field-based speed training methods in team sport athletes. J Strength Cond Res 26(10): 2721-2728, 2012-Session ratings of perceived exertion (session RPE) are commonly used to assess global training intensity for team sports. However, there is little research quantifying the intensity of field-based training protocols for speed development. The study's aim was to determine the session RPE of popular training protocols (free sprint [FST], resisted sprint [RST], and plyometrics [PT]) designed to improve sprint acceleration over 10 m in team sport athletes. Twenty-seven men (age = 23.3 ± 4.7 years; mass = 84.5 ± 8.9 kg; height = 1.83 ± 0.07 m) were divided into 3 groups according to 10-m velocity. Training consisted of an incremental program featuring two 1-hour sessions per week for 6 weeks. Subjects recorded session RPE 30 minutes post training using the Borg category-ratio 10 scale. Repeated measures analysis of variance found significant (p < 0.05) changes in sprint velocity and session RPE over 6 weeks. All groups significantly increased 0- to 5-m velocity and 0- to 10-m velocity by 4-7%, with no differences between groups. There were no significant differences in session RPE between the groups, suggesting that protocols were matched for intensity. Session RPE significantly increased over the 6 weeks for all groups, ranging from 3.75 to 5.50. This equated to intensities of somewhat hard to hard. Post hoc testing revealed few significant weekly increases, suggesting that session RPE may not be sensitive to weekly load increases in sprint and plyometric training programs. Another explanation, however, could be that the weekly load increments used were not great enough to increase perceived exertion. Nonetheless, the progressive overload of each program was sufficient to improve 10-m sprint performance. The session RPE values from the present study could be used to assess workload for speed training periodization within a team sports conditioning program.  相似文献   

2.
The aims of this study were to evaluate the effects of caffeine supplementation on sprint cycling performance and to determine if there was a dose-response effect. Using a randomized, double-blind, placebo-controlled design, 17 well-trained men (age: 24 ± 6 years, height: 1.82 ± 0.06 m, and body mass(bm): 82.2 ± 6.9 kg) completed 7 maximal 10-second sprint trials on an electromagnetically braked cycle ergometer. Apart from trial 1 (familiarization), all the trials involved subjects ingesting a gelatine capsule containing either caffeine or placebo (maltodextrin) 1 hour before each sprint. To examine dose-response effects, caffeine doses of 2, 4, 6, 8, and 10 mg·kg bm(-1) were used. There were no significant (p ≥ 0.05) differences in baseline measures of plasma caffeine concentration before each trial (grand mean: 0.14 ± 0.28 μg·ml(-1)). There was, however, a significant supplement × time interaction (p < 0.001), with larger caffeine doses producing higher postsupplementation plasma caffeine levels. In comparison with placebo, caffeine had no significant effect on peak power (p = 0.11), mean power (p = 0.55), or time to peak power (p = 0.17). There was also no significant effect of supplementation on pretrial blood lactate (p = 0.58), but there was a significant time effect (p = 0.001), with blood lactate reducing over the 50 minute postsupplementation rest period from 1.29 ± 0.36 to 1.06 ± 0.33 mmol·L(-1). The results of this study show that caffeine supplementation has no effect on short-duration sprint cycling performance, irrespective of the dosage used.  相似文献   

3.
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.  相似文献   

4.
The aim of the study was to determine and analyze the level of certain motor abilities (acceleration and agility, the explosive strength of arms, and take-off power) of young elite European female basketball players. We also wanted to establish whether there were any differences between 3 groups of female basketball players who differed in terms of their playing performance. The sample of subjects consists of 65 female basketball players aged 14.49 (± 0.61) years who were divided into 3 groups (divisions A, B, and C of the European Championships). We compare the groups by using 8 motor tests. p Values <0.05 were considered statistically significant. The results show that the division C players achieved below-average results in all tests and thus differ from the players from divisions A and B whose test results were relatively homogeneous. The division C players differ from those from divisions A and B mainly in the 6 × 5-m sprint dribble (discriminant ratio coefficients [DRC] = 0.435), medicine ball throw (DRC = 0.375), and 20-m sprint (DRC = 0.203). Discriminatory power in the 6 × 5-m sprint dribble and 20-m sprint tests is preserved even after eliminating the effect of body height. We assume that, besides the deficit in body height and training status, this is also 1 of the key reasons for these players' lower playing efficiency compared to those from divisions A and B. We hope the findings of this study will enable the generation of model values, which can assist basketball coaches for this age category in basketball clubs, high schools, national teams, and basketball camps.  相似文献   

5.
The purpose of this study was to assess the threshold where simulated adipose tissue weight gain significantly affects performance in common anaerobic tasks and determine whether differences exist between men and women. Forty-six subjects (men = 21; women = 25) were tested for vertical jump, 20- and 40-yd dash, and 20-yd shuttle tests under 6 different loading conditions (0, 2, 4, 6, 8, and 10% of added body weight). Results were compared to each subject's baseline values (0% loading condition). Results demonstrate significant decrements in performance, starting at the 2% loading condition, for both genders, in every performance test (p < 0.05). On average, subjects jumped 4.91 ± 0.29 to 9.83 ± 0.30 cm less, increased agility test times from 5.49 ± 0.56 to 5.86 ± 0.61 seconds, and increased sprint times from 7.80 ± 0.96 to 8.39 ± 1.07 seconds (2-10%, respectively; p < 0.05). When lower-body power was corrected for total body mass, men exerted significantly more power than women did in every loading condition. Conversely, when lower-body power was corrected for lean body mass, men exerted significantly more power than did women only at the 2% loading condition. This study demonstrates that for the specific anaerobic performance tests performed, increases in external loading as low as 2% of body weight results in significant decreases in performance. Moreover, for these specific tests, men and women tend to express the same threshold in performance decrements.  相似文献   

6.
ABSTRACT: Burden, RJ and Glaister, M. The effects of ionized and nonionized compression garments on sprint and endurance cycling. J Strength Cond Res 26(10): 2837-2843, 2012-The aim of this study was to examine the effects of ionized and nonionized compression tights on sprint and endurance cycling performance. Using a randomized, blind, crossover design, 10 well-trained male athletes (age: 34.6 ± 6.8 years, height: 1.80 ± 0.05 m, body mass: 82.2 ± 10.4 kg, V[Combining Dot Above]O2max: 50.86 ± 6.81 ml·kg·min) performed 3 sprint trials (30-second sprint at 150% of the power output required to elicit V[Combining Dot Above]O2max [pV[Combining Dot Above]O2max] + 3 minutes recovery at 40% pV[Combining Dot Above]O2max + 30-second Wingate test + 3 minutes recovery at 40% pV[Combining Dot Above]O2max) and 3 endurance trials (30 minutes at 60% pV[Combining Dot Above]O2max + 5 minutes stationary recovery + 10-km time trial) wearing nonionized compression tights, ionized compression tights, or standard running tights (control). There was no significant effect of garment type on key Wingate measures of peak power (grand mean: 1,164 ± 219 W, p = 0.812), mean power (grand mean: 716 ± 68 W, p = 0.800), or fatigue (grand mean: 66.5 ± 6.9%, p = 0.106). There was an effect of garment type on blood lactate in the sprint and the endurance trials (p < 0.05), although post hoc tests only detected a significant difference between the control and the nonionized conditions in the endurance trial (mean difference: 0.55 mmol·L, 95% likely range: 0.1-1.1 mmol·L). Relative to control, oxygen uptake (p = 0.703), heart rate (p = 0.774), and time trial performance (grand mean: 14.77 ± 0.74 minutes, p = 0.790) were unaffected by either type of compression garment during endurance cycling. Despite widespread use in sport, neither ionized nor nonionized compression tights had any significant effect on sprint or endurance cycling performance.  相似文献   

7.
There has been much investigation into the use of music as an ergogenic aid to facilitate physical performance. However, previous studies have primarily focused on predetermined music and aerobic exercise. The purpose of this study was to investigate the effects of self-selected music (SSM) vs. those of no music (NM) on the mood and performance of the athletes performing bench press and squat jump. Twenty resistance trained collegiate men completed 2 experimental conditions, one while listening to SSM and the other with NM. The subjects reported their profile of mood states (POMS) and rating of perceived exertion (RPE) before and after performing 3 sets to failure of the bench press at 75% 1 repetition maximum (1RM) and 3 reps of the squat jump at 30% 1RM. Statistical analyses revealed no differences in squat jump height or relative ground reaction force, but the takeoff velocity (SSM-2.06 ± 0.17 m·s(-1); NM-1.99 ± 0.18 m·s(-1)), rate of velocity development (SSM-5.92 ± 1.46 m·s(-2); NM-5.63 ± 1.70 m·s(-2)), and rate of force development (SSM-3175.61 ± 1792.37 N·s(-1); NM-2519.12 ± 1470.32 N·s(-1)) were greater with SSM, whereas RPE (SSM-5.71 ± 1.37; NM-6.36 ± 1.61) was greater with NM. Bench press reps to failure and RPE were not different between conditions. The POMS scores of vigor (SSM-20.15 ± 5.58; NM-17.45 ± 5.84), tension (SSM-8.40 ± 3.99; NM-6.07 ± 3.26), and fatigue (SSM-8.65 ± 4.49; NM-7.40 ± 4.38) were greater with SSM. This study demonstrated increased performance during an explosive exercise and an altered mood state when listening to SSM. Therefore, listening to SSM might be beneficial for acute power performance.  相似文献   

8.
When testing the ability of sportsmen to repeat maximal intensity efforts, or when designing specific training exercises to improve it, fatigue during repeated sprints is usually investigated through a number of sprints identical for all subjects, which induces a high intersubject variability in performance decrement in a typical heterogeneous group of athletes (e.g., team sport group, students, and research protocol volunteers). Our aim was to quantify the amplitude of the reduction in this variability when individualizing the sprint dose, that is, when requiring subjects to perform the number of sprints necessary to reach a target level of performance decrement. Fifteen healthy men performed 6-second sprints on a cycle ergometer with 24 seconds of rest until exhaustion or until 20 repetitions in case no failure occurred. Peak power output (PPO) was measured and a fatigue index (FI) computed. The variability in PPO decrement was compared between the 10th sprint and the sprint at which subject reached the target FI of 10%. Individual FI values after the 10th sprint were 14.6 ± 6.9 vs. 11.1 ± 1.2%, when individualizing the sprint dose, which corresponded to coefficients of interindividual variability of ~47.3 and ~10.8%, respectively. Individualizing the sprint dose substantially reduced intersubject variability in performance decrement, enabling a more standardized state of fatigue in repeated-sprints protocols designed to induce fatigue and test or train this specific repeated-sprint ability in a heterogeneous group of athletes. A direct feedback on the values of performance parameters is necessary between each sprint for the experimenter to set this individualized sprint dose.  相似文献   

9.
The objective of this study was to examine the effect of sodium bicarbonate (NaHCO3-) ingestion on performance and perceptual responses in a laboratory-simulated bicycle motocross (BMX) qualification series. Nine elite BMX riders volunteered to participate in this study. After familiarization, subjects undertook two trials involving repeated sprints (3 x Wingate tests [WTs] separated by 30 minutes of recovery; WT1, WT2, WT3). Ninety minutes before each trial, subjects ingested either NaHCO3- or placebo in a counterbalanced, randomly assigned, double-blind manner. Each trial was separated by 4 days. Performance variables of peak power, mean power, time to peak power, and fatigue index were calculated for each sprint. Ratings of perceived exertion were obtained after each sprint, and ratings of perceived readiness were obtained before each sprint. No significant differences were observed in performance variables between successive sprints or between trials. For the NaHCO3- trial, peak blood lactate during recovery was greater after WT2 (p < 0.05) and tended to be greater after WT3 (p = 0.07), and ratings of perceived exertion were not influenced. However, improved ratings of perceived readiness were observed before WT2 and WT3 (p < 0.05). In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.  相似文献   

10.
ABSTRACT: Glaister, M, Pattison, JR, Dancy, B, and McInnes, G. Perceptual and physiological responses to recovery from a maximal 30-second sprint. J Strength Cond Res 26(10): 2850-2857, 2012-The aims of this study were to evaluate perceptions of postexercise recovery and to compare patterns of perceived recovery with those of several potential mediating physiological variables. Seventeen well-trained men (age: 22 ± 4 years; height: 1.83 ± 0.05 m; body mass: 78.9 ± 7.6 kg; and body fat: 11.1 ± 2.2%) completed 10 sprint trials on an electromagnetically braked cycle ergometer. Trial 1 evaluated peak power via a 5-second sprint. The remaining trials evaluated (a) the recovery of peak power after a maximal 30-second sprint using rest intervals of 5, 10, 20, 40, 80, and 160 seconds; (b) perceived recovery via visual analog scales; and (c) physiological responses during recovery. The time point in recovery at which individuals perceived they had fully recovered was 163.3 ± 57.5 seconds. Power output at that same time point was 83.6 ± 5.2% of peak power. There were no significant differences between perceived recovery and the recovery processes of V[Combining Dot Above]O2 or minute ventilation (VE). Despite differences in the time courses of perceived recovery and the recovery of power output, individuals were able to closely predict full recovery without the need for external timepieces. Moreover, the time course of perceived recovery is similar to that of V[Combining Dot Above]O2 and VE.  相似文献   

11.
An observed relationship between soccer match duration and injury has led to research examining the changes in lower extremity mechanics and performance with fatiguing exercise. Because many fatigue protocols are designed to result in substantial muscular deficits, they may not reflect the fatigue associated with sport-specific demands that have been associated with the increasing incidence of injury as the match progresses. Thus, the aim of this study was to systematically analyze the progressive changes in lower extremity mechanics and performance during an individualized exercise protocol designed to simulate a 90-minute soccer match. Previous match analysis data were used to systematically develop a simulated soccer match exercise protocol that was individualized to the participant's fitness level. Twenty-four National Collegiate Athletic Association Division I soccer players (12 men, 12 women) participated in 2 testing sessions. In the first session, the participants completed the Yo-Yo Intermittent Recovery Test Level 1 to assess their fitness level and determine the 5 submaximal running intensities for their soccer match simulation. In the second test session, progressive changes in the rating of perceived exertion (RPE), lower extremity performance (vertical jump height, sprint speed, and cutting speed), and movement mechanics (jumping vertical stiffness and terminal landing impedance) were measured during the soccer match simulation. The average match simulation running distance was 10,165 ± 1,001 m, consistent with soccer match analysis research. Time-related increases in RPE, and decrements in sprinting, and cutting speed were observed, suggesting that fatigue increased as the simulation progressed. However, there were no time-related decreases in vertical jump height, changes in lower extremity vertical stiffness in jumping, or vertical impedance during landing. Secondary analyses indicated that the coordinative changes responsible for the maintenance of stiffness and impedance differed between the dominant and nondominant limbs. Despite an increase in RPE to near exhaustive levels, and decrements in sprint and cutting performance, the participants were able to maintain jump performance and movement mechanics. Interestingly, the coordinative changes that allowed for the maintenance of vertical stiffness and impedance varied between limbs. Thus, suggesting that unilateral training for performance and injury prevention in soccer-specific populations should be considered.  相似文献   

12.
Because previous research has shown a relationship between maximal squat strength and sprint performance, this study aimed to determine if changes in maximal squat strength were reflected in sprint performance. Nineteen professional rugby league players (height = 1.84 ± 0.06 m, body mass [BM] = 96.2 ± 11.11 kg, 1 repetition maximum [1RM] = 170.6 ± 21.4 kg, 1RM/BM = 1.78 ± 0.27) conducted 1RM squat and sprint tests (5, 10, and 20 m) before and immediately after 8 weeks of preseason strength (4-week Mesocycle) and power (4-week Mesocycle) training. Both absolute and relative squat strength values showed significant increases after the training period (pre: 170.6 ± 21.4 kg, post: 200.8 ± 19.0 kg, p < 0.001; 1RM/BM pre: 1.78 ± 0.27 kg·kg(-1), post: 2.05 ± 0.21 kg·kg(-1), p < 0.001; respectively), which was reflected in the significantly faster sprint performances over 5 m (pre: 1.05 ± 0.06 seconds, post: 0.97 ± 0.05 seconds, p < 0.001), 10 m (pre: 1.78 ± 0.07 seconds, post: 1.65 ± 0.08 seconds, p < 0.001), and 20 m (pre: 3.03 ± 0.09 seconds, post: 2.85 ± 0.11 seconds, p < 0.001) posttraining. Whether the improvements in sprint performance came as a direct consequence of increased strength or whether both are a function of the strength and power mesocycles incorporated into the players' preseason training is unclear. It is likely that the increased force production, noted via the increased squat performance, contributed to the improved sprint performances. To increase short sprint performance, athletes should, therefore, consider increasing maximal strength via the back squat.  相似文献   

13.
Relationship between functional movement screen and athletic performance   总被引:1,自引:0,他引:1  
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance.  相似文献   

14.
Recently, athletes have transitioned from traditional static stretching during warm-ups to incorporating dynamic stretching routines. However, the optimal volume of dynamic drills is yet to be identified. The aim of this repeated-measures study was to examine varying volumes (1, 2, and 3 sets) of active dynamic stretching (ADS) in a warm-up on 10- and 20-m sprint performance. With a within-subject design, 16 highly trained male participants (age: 20.9 ± 1.3 years; height: 179.7 ± 5.7 cm; body mass: 72.7 ± 7.9 kg; % body fat: 10.9 ± 2.4) completed a 5-minute general running warm-up before performing 3 preintervention measures of 10- to 20-m sprint. The interventions included 1, 2, and 3 sets of active dynamic stretches of the lower-body musculature (gastrocnemius, gluteals, hamstrings, quadriceps, and hip flexors) performed approximately 14 times for each exercise while walking (ADS1, ADS2, and ADS3). The active dynamic warm-ups were randomly allocated before performing a sprint-specific warm-up. Five minutes separated the end of the warm-up and the 3 postintervention measures of 10- to 20-m sprints. There were no significant time, condition, and interaction effects over the 10-m sprint time. For the 0- to 20-m sprint time, a significant main effect for the pre-post measurement (F = 10.81; p < 0.002), the dynamic stretching condition (F = 6.23; p = 0.004) and an interaction effect (F = 41.19; p = 0.0001) were observed. A significant decrease in sprint time (improvement in sprint performance) post-ADS1 (2.56%, p = 0.001) and post-ADS2 (2.61%, p = 0.001) was observed. Conversely, the results indicated a significant increase in sprint time (sprint performance impairment) post-ADS3 condition (2.58%, p = 0.001). Data indicate that performing 1-2 sets of 20 m of active dynamic stretches in a warm-up can enhance 20-m sprint performance. The results delineated that 3 sets of ADS repetitions could induce acute fatigue and impair sprint performance within 5 minutes of the warm-up.  相似文献   

15.
Equipment with counterbalance weight systems is commonly used for the assessment of performance in explosive resistance exercise movements, but it is not known if such systems affect performance measures. The purpose of this study was to determine the effect of using a counterbalance weight system on measures of smith machine bench press throw performance. Ten men and 14 women (mean ± SD: age, 25 ± 4 years; height, 173 ± 10 cm; weight, 77.7 ± 18.3 kg) completed maximal smith machine bench press throws under 4 different conditions (2 × 2; counterbalance × load): with or without a counterbalance weight system and using 'light' or 'moderate' net barbell loads. Performance variables (peak force, peak velocity, and peak power) were measured using a linear accelerometer attached to the barbell. The counterbalance weight system resulted in significant (p < 0.001) reductions in measures of peak force (mean difference ± standard error: light: -112 ± 20 N; moderate: -140 ± 23 N), peak velocity (light: -0.49 ± 0.10 m·s; moderate: -0.33 ± 0.07 m·s), and peak power (light: -220 ± 43 W; moderate: -143 ± 28 W) compared with no counterbalance system for both load conditions. Load condition did not affect absolute or percentage reductions from the counterbalance weight system for any variable. In conclusion, the use of a counterbalance weight system reduces accelerometer-based performance measures for the bench press throw exercise at light and moderate loads. This reduction in measures is likely because of an increase in the external resistance during the movement, which results in a discrepancy between the manually input and the actual value for external load. A counterbalance weight system should not be used when measuring performance in explosive resistance exercises with an accelerometer.  相似文献   

16.
The aim of this study was to investigate the effect of a high-fat diet (HFD) followed by 1 day of carbohydrate (CHO) loading on substrate utilization, heart rate variability (HRV), effort perception [rating or perceived exertion (RPE)], muscle recruitment [electromyograph (EMG)], and performance during a 100-km cycling time trial. In this randomized single-blind crossover study, eight well-trained cyclists completed two trials, ingesting either a high-CHO diet (HCD) (68% CHO energy) or an isoenergetic HFD (68% fat energy) for 6 days, followed by 1 day of CHO loading (8-10 g CHO/kg). Subjects completed a 100-km time trial on day 1 and a 1-h cycle at 70% of peak oxygen consumption on days 3, 5, and 7, during which resting HRV and resting and exercising respiratory exchange ratio (RER) were measured. On day 8, subjects completed a 100-km performance time trial, during which blood samples were drawn and EMG was recorded. Ingestion of the HFD reduced RER at rest (P < 0.005) and during exercise (P < 0.01) and increased plasma free fatty acid levels (P < 0.01), indicating increased fat utilization. There was a tendency for the low-frequency power component of HRV to be greater for HFD-CHO (P = 0.056), suggestive of increased sympathetic activation. Overall 100-km time-trial performance was not different between diets; however, 1-km sprint power output after HFD-CHO was lower (P < 0.05) compared with HCD-CHO. Despite a reduced power output with HFD-CHO, RPE, heart rate, and EMG were not different between trials. In conclusion, the HFD-CHO dietary strategy increased fat oxidation, but compromised high intensity sprint performance, possibly by increased sympathetic activation or altered contractile function.  相似文献   

17.
Gait asymmetry analyses are beneficial from clinical, coaching and technology perspectives. Quantifying overall athlete asymmetry would be useful in allowing comparisons between participants, or between asymmetry and other factors, such as sprint running performance. The aim of this study was to develop composite kinematic and kinetic asymmetry scores to quantify athlete asymmetry during maximal speed sprint running. Eight male sprint trained athletes (age 22±5 years, mass 74.0±8.7 kg and stature 1.79±0.07 m) participated in this study. Synchronised sagittal plane kinematic and kinetic data were collected via a CODA motion analysis system, synchronised to two Kistler force plates. Bilateral, lower limb data were collected during the maximal velocity phase of sprint running (velocity=9.05±0.37 ms(-1)). Kinematic and kinetic composite asymmetry scores were developed using the previously established symmetry angle for discrete variables associated with successful sprint performance and comparisons of continuous joint power data. Unlike previous studies quantifying gait asymmetry, the scores incorporated intra-limb variability by excluding variables from the composite scores that did not display significantly larger (p<0.05) asymmetry than intra-limb variability. The variables that contributed to the composite scores and the magnitude of asymmetry observed for each measure varied on an individual participant basis. The new composite scores indicated the inter-participant differences that exist in asymmetry during sprint running and may serve to allow comparisons between overall athlete asymmetry with other important factors such as performance.  相似文献   

18.
We investigated the effects of program design on 400-m sprint time by applying a Rating of Perceived Exertion (RPE) mathematical model to training performance. The subject was 24 years old and had been training for 9 years. His best performance in 400-m sprint competitions was 45.50 seconds. Body weight, resting heart rate, training time and RPE were monitored daily after training sessions. Similarly, performance in 400-m races was recorded 9 times during 2003. At the World Championships in Athletics in France, the subject's team placed eighth in the 1,600-m relay. The RPE mathematical model was able to predict changes in performance. Rate of matching was statistically significant (r(2) = 0.83, F ratio = 34.27, p < 0.001). Application of the RPE mathematical model to the design of a training program specific to the needs of a 400-m sprinter indicates a potentially powerful tool that can be applied to accurately assess the effects of training on athletic performance.  相似文献   

19.
The purpose of this study was to compare repetition performance and rating of perceived exertion (RPE) with 1-, 3-, or 5-minute rest intervals between sets of multi and single-joint resistance exercises. Fifteen resistance trained men (23.6 ± 2.64 years, 76.46 ± 7.53 kg, 177 ± 6.98 cm, bench press [BP] relative strength: 1.53 ± 0.25 kg·kg(-1) body mass) completed 12 sessions (4 exercises × 3 rest intervals), with each session involving 5 sets with 10 repetition maximum loads for the free weight BP, machine leg press (LP), machine chest fly (MCF), and machine leg extension (LE) exercises with 1-, 3-, 5-minute rest intervals between sets. The results indicated significantly greater BP repetitions with 3 or 5 minutes vs. 1 minute between sets (p ≤ 0.05); no significant difference was evident between the 3- and 5-minute rest conditions. For the other exercises (i.e., LP, MCF, and LE), significant differences were evident between all rest conditions (1 < 3 < 5; p ≤ 0.05). For all exercises, consistent declines in repetition performance (relative to the first set) were observed for all rest conditions, starting with the second set for the 1-minute condition and the third set for the 3- and 5-minute conditions. Furthermore, significant increases in RPE were evident over successive sets for both the multi and single-joint exercises, with significantly greater values for the 1-minute condition. In conclusion, both multi and single-joint exercises exhibited similar repetition performance patterns and RPE, independent of the rest interval length between sets.  相似文献   

20.
The Lys(K)153Arg(R) polymorphism in exon 2 (rs1805086, 2379 A>G replacement) of the myostatin (MSTN) gene is a candidate to influence skeletal muscle phenotypes. We examined the association between the MSTN K153R polymorphism and 'explosive' leg power, assessed during sprint (30 m) and stationary jumping tests [squat (SJ) and counter-movement jumps (CMJ)] in non-athletic young adults (University students) [n = 281 (214 men); age: 21-32 years]. We also genotyped the MSTN exonic variants E164K (rs35781413), I225T, and P198A, yet no subject carried any of these variant MSTN alleles. As for the K153R polymorphism, we found only one woman with the KR genotype; thus, we presented the results only for men. The results of a one-way ANCOVA (with age, weight and height entered as covariates) showed that men with the KR genotype (n = 15) had a worse performance in vertical jumps compared with those with the KK genotype [SJ: vertical displacement of center of gravity (CG) of 35.17 ± 1.42 vs. 39.06 ± 0.39 cm, respectively, P = 0.009; CMJ: vertical displacement of CG of 36.44 ± 1.50 vs. 40.63 ± 0.41 cm, respectively, P = 0.008]. The results persisted after adjusting for multiple comparisons according to Bonferroni. Performance in 30 m sprint tests did however not differ by K153R genotypes. In summary, the MSTN K153R polymorphism is associated with the ability to produce 'peak' power during muscle contractions, as assessed with vertical jump tests, in young non-athletic men. Although more research is still needed, this genetic variation is among the numerous candidates to explain, alone or in combination with other polymorphisms, individual variations in muscle phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号