首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
In tobacco plants, wounding induces production of a set of defense-related proteins such as basic pathogenesis-related (PR) proteins and proteinase inhibitors (PIs) via the jasmonate/ethylene pathway. Although class III plant peroxidase (POX) is also wound-inducible, the regulatory mechanism for its wound-induced expression is not fully understood. Here, we describe that a tobacco POX gene (tpoxN1), which is constitutively expressed in roots, is induced locally 30 min after wounding and then systemically in tobacco plants. Infection of necrotizing virus also induced tpoxN1 gene. The wound-induced expression was not enhanced by known wound-signal compounds such as methyl jasmonate (MeJA) and ethephon in contrast to other wound-inducible genes such as basic PR-1 and PI-II genes. And treatment with MeJA and coronatine, biological analogs of jasmonate, rather suppressed the tpoxN1 expression. Salicylic acid, an antagonist of jasmonate-based wound signaling, did not suppress the wound-induced expression of tpoxN1. Only spermine, which is reported as an endogenous inducer for acidic PR genes in tobacco mosaic virus-infected tobacco leaves, could induce tpoxN1 gene expression. These results suggest that wound-induced expression of the tpoxN1 gene is regulated differently from that of the basic PR and PI-II genes.  相似文献   

4.
The common plant phospholipase D (PLD), PLDalpha, has been proposed to be involved in wound-induced production of jasmonic acid. To better understand the role(s) of PLDalpha in the wound response, detailed lipid analysis was carried out to determine the in vivo substrates and the contribution of PLDalpha in wound-induced lipid metabolism in Arabidopsis thaliana. Mechanical wounding of Arabidopsis leaves resulted in significantly less hydrolysis of phosphatidylcholine (PC) in PLDalpha-deficient than in wild-type plants. Hydrolysis of phosphatidylethanolamine, phosphatidylglycerol (PG), and phosphatidylinositol within 30 min of wounding was not significantly different in PLDalpha-deficient and wild-type leaves. Phosphatidic acid (PA) levels increased rapidly in wild-type and, to a lesser extent, in PLDalpha-deficient plants. The acyl composition of the PA generated by wounding suggests that the major in vivo substrate of PLD in wild-type leaves was PC, and that PG hydrolysis accounted for 10-15% of the wound-induced PA in wild-type leaves. Comparison of the acyl compositions of the wound-induced PA of wild-type and PLDalpha-deficient leaves indicated that PLDalpha hydrolyzed PG more readily than other PLD isoforms did. Wounding produced substantial increases in free linoleic and linolenic acids in wild-type plants, whereas PLDalpha-deficient plants showed only a slight increase in linoleic acid and no significant increase in linolenic acid. These results demonstrate that PLDalpha and at least one other PLD isoform, as well as other hydrolytic enzymes, are active in mechanically wounded Arabidopsis leaves, and PLDalpha is involved in wound-induced metabolism of polyunsaturated fatty acids.  相似文献   

5.
6.
7.
Wound-response regulation of the sweet potato sporamin gene promoter region   总被引:9,自引:0,他引:9  
Sporamin, a tuberous storage protein of sweet potato, was systemically expressed in leaves and stems by wound stimulation. In an effort to demonstrate the regulatory mechanism of wound response on the sporamin gene, a 1.25 kb sporamin promoter was isolated for studying the wound-induced signal transduction. Two wound response-like elements, a G box-like element and a GCC core-like sequence were found in this promoter. A construct containing the sporamin promoter fused to a -glucuronidase (GUS) gene was transferred into tobacco plants by Agrobacterium-mediated transformation. The wound-induced high level of GUS activity was observed in stems and leaves of transgenic tobacco, but not in roots. This expression pattern was similar to that of the sporamin gene in sweet potatoes. Exogenous application of methyl jasmonate (MeJA) activated the sporamin promoter in leaves and stems of sweet potato and transgenic tobacco plants. A competitive inhibitor of ethylene (2,5-norbornadiene; NBD) down-regulated the effect of MeJA on sporamin gene expression. In contrast, salicylic acid (SA), an inhibitor of the octadecanoid pathway, strongly suppressed the sporamin promoter function that was stimulated by wound and MeJA treatments. In conclusion, wound-response expression of the sporamin gene in aerial parts of plants is regulated by the octadecanoid signal pathway.  相似文献   

8.
To create a metabolic sink in the jasmonic acid (JA) pathway, we generated transgenic Nicotiana attenuata lines ectopically expressing Arabidopsis (Arabidopsis thaliana) jasmonic acid O-methyltransferase (35S-jmt) and additionally silenced in other lines the N. attenuata methyl jasmonate esterase (35S-jmt/ir-mje) to reduce the deesterification of methyl jasmonate (MeJA). Basal jasmonate levels did not differ between transgenic and wild-type plants; however, after wounding and elicitation with Manduca sexta oral secretions, the bursts of JA, jasmonoyl-isoleucine (JA-Ile), and their metabolites that are normally observed in the lamina, midvein, and petiole of elicited wild-type leaves were largely absent in both transformants but replaced by a burst of endogenous MeJA that accounted for almost half of the total elicited jasmonate pools. In these plants, MeJA became a metabolic sink that affected the jasmonate metabolic network and its spread to systemic leaves, with major effects on 12-oxo-phytodieonic acid, JA, and hydroxy-JA in petioles and on JA-Ile in laminas. Alterations in the size of jasmonate pools were most obvious in systemic tissues, especially petioles. Expression of threonine deaminase and trypsin proteinase inhibitor, two JA-inducible defense genes, was strongly decreased in both transgenic lines without influencing the expression of JA biosynthesis genes that were uncoupled from the wounding and elicitation with M. sexta oral secretions-elicited JA-Ile gradient in elicited leaves. Taken together, this study provides support for a central role of the vasculature in the propagation of jasmonates and new insights into the versatile spatiotemporal characteristics of the jasmonate metabolic network.  相似文献   

9.
Berger S  Bell E  Mullet JE 《Plant physiology》1996,111(2):525-531
Jasmonates are plant signal molecules that are derived from lipids through the action of lipoxygenase. Jasmonates regulate gene expression during plant development and in response to water deficit, wounding, and pathogen elicitors. The signal transduction chain that mediates jasmonate action was investigated by isolating and studying two methyl jasmonate (MeJA)-insensitive mutants of Arabidopsis thaliana. The recessive mutants, jin1 and jin4, are nonallelic and neither corresponds to coi1, a previously identified MeJA-insensitive mutant. Both mutants showed reduced sensitivity to MeJA-mediated root growth inhibition as well as reduced MeJA induction of AtVsp in leaves. Expression of AtVsp in flowers was not altered in the mutants. Furthermore, MeJA modulation of the jasmonate-responsive lipoxygenase and phenylalanine ammonia lyase genes was not altered in the mutants. jin4 plants exhibited increased sensitivity to abscisic acid in seed germination assays, whereas jin1 plants showed wild-type sensitivity. Neither mutant showed altered sensitivity to ethylene in hypocotyl growth inhibition assays. jin1 and jin4 identify genes that modulate the response of AtVsp to MeJA in leaves of A. thaliana.  相似文献   

10.
11.
A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants.  相似文献   

12.
Lipoxygenases (LOXs) catalyze the formation of fatty acid hydroperoxides involved in responses to stresses. This study examines the expression of a non-traditional dual positional specific maize LOX in response to wounding or methyl jasmonate (MeJA). Full-length maize LOX cDNA was expressed in Escherichia coli, and recombinant LOX was purified and characterized enzymatically. RP-HPLC and GC-MS analysis showed that the purified LOX converts alpha-linolenic acid into 13-hydroperoxylinolenic acid and 9-hydroperoxylinolenic acid in a 6:4 ratio. LOX mRNA accumulated rapidly and transiently in response to wounding reaching a peak of expression about 3 h after wounding. This increase followed an initial increase in endogenous jasmonic acid (JA) 1 h after wounding (JA burst). However, the expression of LOX induced by MeJA lasted longer than the expression induced by wounding, and the MeJA-induced expression seemed to be biphasic pattern composed of early and late phases. The expression of LOX in the presence of inhibitors of JA biosynthesis was not completely inhibited, but delayed in wound response and the expression period was shortened in MeJA response. These results suggest that wound-responsive JA burst may trigger the early phase of LOX expression which facilitates biosynthesis of endogenous JA through its 13-LOX activity, and subsequently leads to the activation of the late phase LOX expression in MeJA-treated maize seedlings. Implications of dual positional specificity of maize LOX in the observed expression kinetics are discussed.  相似文献   

13.
The common plant phospholipase D (PLD), PLDα, has been proposed to be involved in wound-induced production of jasmonic acid. To better understand the role(s) of PLDα in the wound response, detailed lipid analysis was carried out to determine the in vivo substrates and the contribution of PLDα in wound-induced lipid metabolism in Arabidopsis thaliana. Mechanical wounding of Arabidopsis leaves resulted in significantly less hydrolysis of phosphatidylcholine (PC) in PLDα-deficient than in wild-type plants. Hydrolysis of phosphatidylethanolamine, phosphatidylglycerol (PG), and phosphatidylinositol within 30 min of wounding was not significantly different in PLDα-deficient and wild-type leaves. Phosphatidic acid (PA) levels increased rapidly in wild-type and, to a lesser extent, in PLDα-deficient plants. The acyl composition of the PA generated by wounding suggests that the major in vivo substrate of PLD in wild-type leaves was PC, and that PG hydrolysis accounted for 10–15% of the wound-induced PA in wild-type leaves. Comparison of the acyl compositions of the wound-induced PA of wild-type and PLDα-deficient leaves indicated that PLDα hydrolyzed PG more readily than other PLD isoforms did. Wounding produced substantial increases in free linoleic and linolenic acids in wild-type plants, whereas PLDα-deficient plants showed only a slight increase in linoleic acid and no significant increase in linolenic acid. These results demonstrate that PLDα and at least one other PLD isoform, as well as other hydrolytic enzymes, are active in mechanically wounded Arabidopsis leaves, and PLDα is involved in wound-induced metabolism of polyunsaturated fatty acids.  相似文献   

14.
A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks.  相似文献   

15.
Gross N  Wasternack C  Köck M 《Phytochemistry》2004,65(10):1343-1350
Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.  相似文献   

16.

Background

Reactive oxygen species (ROS) are not only cytotoxic compounds leading to oxidative damage, but also signaling molecules for regulating plant responses to stress and hormones. Arabidopsis cytosolic ascorbate peroxidase 1 (APX1) is thought to be a central regulator for cellular ROS levels. However, it remains unclear whether APX1 is involved in plant tolerance to wounding and methyl jasmonate (MeJA) treatment, which are known to enhance ROS production.

Methods

We studied the effect of wounding and MeJA treatment on the levels of H2O2 and oxidative damage in the Arabidopsis wild-type plants and knockout mutants lacking APX1 (KO-APX1).

Results

The KO-APX1 plants showed high sensitivity to wounding and MeJA treatment. In the leaves of wild-type plants, H2O2 accumulated only in the vicinity of the wound, while in the leaves of the KO-APX1 plants it accumulated extensively from damaged to undamaged regions. During MeJA treatment, the levels of H2O2 were much higher in the leaves of KO-APX1 plants. Oxidative damage in the chloroplasts and nucleus was also enhanced in the leaves of KO-APX1 plants. These findings suggest that APX1 protects organelles against oxidative stress by wounding and MeJA treatment.

General significance

This is the first report demonstrating that H2O2-scavenging in the cytosol is essential for plant tolerance to wounding and MeJA treatment.  相似文献   

17.
18.
Tomato and potato leucine aminopeptidase (LAP) mRNAs are induced in response to mechanical wounding and the wound signal molecules, ABA and jasmonic acid. Here, we report the isolation of two LAP genes, LAP17.1A and LAP17.2, from tomato. Functional analysis in transgenic tomato and potato plants show that fusions of the corresponding 5 non-coding regions to the gusA gene are constitutively expressed in flowers and induced in leaves upon wounding or by treatment with methyl jasmonate (MeJA). Comparison of the 5 non-coding regions of the two genes revealed a region from –317 to –3 relative to the ATG, which is strongly conserved in both promoters. This 0.3 kb proximal promoter fragment is sufficient to direct flower-specific and MeJA-inducible GUS activity in transgenic potato plants, and thus contains a MeJA-responsive element that mediates induction by MeJA. Dimeric TGACG motifs or G-box elements similar to those found in other MeJA-inducible genes are not observed in this region, which suggests that a different DNA sequence is involved in MeJA induction of the LAP genes.  相似文献   

19.
Methyl jasmonate (MeJA) is an important plant regulator that involves in plant development and regulates the expression of plant defense genes in response to various stresses such as wounding, drought, and pathogens. In order to determine the physiological role of endogenous MeJA in plants, a NTR1 from Brassica campestris encoding a jasmonic acid carboxyl methyltransferase that produces methyl jasmonate was constructed under the control of CaMV 35S promoter and transformed into soybean [Glycine max (L) Merrill]. The transgenic soybean plants constitutively expressed the NTR1 and accumulated more MeJA levels than wild type plants. Overexpression of the gene in transgenic soybean conferred tolerance to dehydration during seed germination and seedling growth as reflected by the percentage of the fresh weight of seedlings. In addition, the transgenic soybean plants also conferred better capacity to retain water than wild type plants when drought tolerance was tested using detached leaves.  相似文献   

20.
Based on high economic importance and nutritious value of tomato fruits and as previous studies employed E8 promoter in fruit ripening-specific gene expression, we have developed transgenic tomato plants overexpressing tomato anionic peroxidase cDNA (tap1) under E8 promoter. Stable transgene integration was confirmed by polymerase chain reaction (PCR) and Southern analysis for nptII. Northern blotting confirmed elevated tap1 levels in the breaker- and red-ripe stages of T(1) transgenic fruits, whereas wild-type (WT) plants did not show tap1 expression in these developmental stages. Further, tap1 expression levels were significantly enhanced in response to wounding in breaker- and red-ripe stages of transgenic fruits, whereas wound-induced expression of tap1 was not detected in WT fruits. Confocal microscopy revealed high accumulation of phenolic compounds at the wound site in transgenic fruits suggesting a role of tap1 in wound-induced phenolic polymerization. Total peroxidase activity has increased remarkably in transgenic pericarp tissues in response to wounding, while very less or minimal levels were recorded in WT pericarp tissues. Transgenic fruits also displayed reduced post-harvest decay and increased resistance toward Alternaria alternata and Fusarium solani infection with noticeable inhibition in lesion formation. Conidiospore germination and mycelial growth of F. solani were severely inhibited when treated with E8-tap1 fruit extracts compared to WT fruits. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed reduced spore viability when incubated in E8-tap1 fruit extracts. Thus, fruit-specific expression of tap1 using E8 promoter is associated with enhanced total peroxidase activity and high phenolic accumulation in fruits with minimized post-harvest deterioration caused by wounding and fungal attack in tomato fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号