首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02×10−06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn''s disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.  相似文献   

2.
Suzuki A  Kochi Y  Okada Y  Yamamoto K 《FEBS letters》2011,585(23):3627-3632
Autoimmune diseases are caused by multiple genes and environmental effects. In addition, genetic contributions and the number of associated genes differ among different diseases and ethnic populations. Genome-wide association studies (GWAS) on rheumatoid arthritis (RA) and multiple sclerosis (MS) show that these diseases share many genetic factors. Recently, in addition to the major histocompatibility complex (MHC) gene, other genetic loci have been found to be associated with the risk for autoimmune diseases. This review focuses on the search for genetic variants that influence the susceptibility to RA and MS as typical autoimmune diseases and discusses the future of GWAS.  相似文献   

3.
Systemic lupus erythematosus induced by Mycobacterium bovis in diabetes-prone nonobese diabetic mice was mapped in a backcross to the BALB/c strain. The subphenotypes-hemolytic anemia, antinuclear autoantibodies, and glomerular immune complex deposition-did not cosegregate, and linkage analysis for each trait was performed independently. Hemolytic anemia mapped to two loci: Bah1 at the MHC on chromosome 17 and Bah2 on distal chromosome 16. Antinuclear autoantibodies mapped to three loci: Bana1 at the MHC on chromosome 17, Bana2 on chromosome 10, and Bana3 on distal chromosome 1. Glomerular immune complex deposition did not show significant linkage to any genomic region. Mapping of autoantibodies (Coombs' or antinuclear autoantibodies) identified two loci: Babs1 at the MHC and Babs2 on distal chromosome 1. It has previously been reported that genes conferring susceptibility to different autoimmune diseases map nonrandomly to defined regions of the genome. One possible explanation for this clustering is that some alleles at loci within these regions confer susceptibility to multiple autoimmune diseases-the "common gene" hypothesis. With the exception of the H2, this study failed to provide direct support for the common gene hypothesis, because the loci identified as conferring susceptibility to systemic lupus erythematosus did not colocalize with those previously implicated in diabetes. However, three of the four regions identified had been previously implicated in other autoimmune diseases.  相似文献   

4.
Uveitis is a complex multifactorial autoimmune disease of the eye characterized by inflammation of the uvea and retina, degeneration of the retina, and blindness in genetically predisposed patients. Using the rat model of experimental autoimmune uveitis (EAU), we previously identified three quantitative trait loci (QTL) associated with EAU on rat chromosomes 4, 12, and 10 (Eau1, Eau2, and Eau3). The primary goal of the current study is to delineate additional non-MHC chromosomal regions that control susceptibility to EAU, and to identify any QTLs that overlap with the QTLs of other autoimmune diseases. Using a set of informative microsatellite markers and F(2) generations of resistant and susceptible MHC class II-matched rat strains (F344 and LEW), we have identified several new significant or suggestive QTLs on rat chromosomes 2, 3, 7, 10, and 19 that control susceptibility to EAU. A protective allele was identified in the susceptible LEW strain in the Eau5 locus at D7Wox18, and epistatic interactions between QTLs were found to influence the severity of disease. The newly identified regions (Eau4 through Eau9) colocalize with the genetic determinants of other autoimmune disease models, and to disease-regulating syntenic regions identified in autoimmune patients on human chromosomes 4q21-31, 5q31-33, 16q22-24, 17p11-q12, 20q11-13, and 22q12-13. Our results suggest that uveitis shares some of the pathogenic mechanisms associated with other autoimmune diseases, and lends support to the "common gene, common pathway" hypothesis for autoimmune disorders.  相似文献   

5.
6.
Selective IgA deficiency (IgAD) and common variable immunodeficiency (CVID) are the most common primary immunodeficiencies in humans. A high degree of familial clustering, marked differences in the population prevalence among ethnic groups, association of IgAD and CVID in families, and a predominant inheritance pattern in multiple-case pedigrees have suggested a strong, shared genetic predisposition. Previous genetic linkage, case-control, and family-based association studies mapped an IgAD/CVID susceptibility locus, designated IGAD1, to the MHC, but its precise location within the MHC has been controversial. We have analyzed a sample of 101 multiple- and 110 single-case families using 36 markers at the IGAD1 candidate region and mapped homozygous stretches across the MHC shared by affected family members. Haplotype analysis, linkage disequilibrium, and homozygosity mapping indicated that HLA-DQ/DR is the major IGAD1 locus, strongly suggesting the autoimmune pathogenesis of IgAD/CVID. This is supported by the highest excess of allelic sharing at 6p in the genome-wide linkage analysis of 101 IgAD/CVID families using 383 marker loci, by previously reported restrictions of the T cell repertoires in CVID, the presence of autoantibodies, impaired T cell activation, and a dysregulation of a number of genes in the targeted immune system. IgAD/CVID may thus provide a useful model for the study of pathogenesis and novel therapeutic strategies in autoimmune diseases.  相似文献   

7.
Recent GWAS have identified several susceptibility loci for NHL. Despite these successes, much of the heritable variation in NHL risk remains to be explained. Common copy-number variants are important genomic sources of variability, and hence a potential source to explain part of this missing heritability. In this study, we carried out a CNV analysis using GWAS data from 681 NHL cases and 749 controls to explore the relationship between common structural variation and lymphoma susceptibility. Here we found a novel association with diffuse large B-cell lymphoma (DLBCL) risk involving a partial duplication of the C-terminus region of the LOC283177 long non-coding RNA that was further confirmed by quantitative PCR. For chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), known somatic deletions were identified on chromosomes 13q14, 11q22-23, 14q32 and 22q11.22. Our study shows that GWAS data can be used to identify germline CNVs associated with disease risk for DLBCL and somatic CNVs for CLL/SLL.  相似文献   

8.
Pathway-based analysis approach has exploded in use during the last several years. It is successful in recognizing additional biological insight of disease and finding groupings of risk genes that represent disease developing processes. Therefore, shared pathways, with pleiotropic effects, are important for understanding similar pathogenesis and indicating the common genetic origin of certain diseases. Here, we present a pathway analysis to reveal the potential disease associations between RA and three potential RA-related autoimmune diseases: psoriasis, diabetes mellitus, type 1 (T1D) and systemic lupus erythematosus (SLE). First, a comprehensive knowledge mining of public databases is performed to discover risk genes associated with RA, T1D, SLE and psoriasis; then by enrichment test of these genes, disease-related risk pathways are detected to recognize the pathways common for RA and three other diseases. Finally, the underlying disease associations are evaluated with the association rules mining method. In total, we identify multiple RA risk pathways with significant pleiotropic effects, the most unsurprising of which are the immunology related pathways. Meanwhile for the first time we highlight the involvement of the viral myocarditis pathway related to cardiovascular disease (CVD) in autoimmune diseases such as RA, psoriasis, T1D and SLE. Further Association rule mining results validate the strong association between RA and T1D and RA and SLE. It is clear that pleiotropy is a common property of pathways associated with disease traits. We provide novel pathway associations among RA and three autoimmune diseases. These results ascertain that there are shared genetic risk profiles that predispose individuals to autoimmune diseases.  相似文献   

9.
The pathogenesis of immune-mediated myocarditis depends on genetic and environmental factors. To study the genetic mechanisms, we have developed a model of experimental autoimmune myocarditis in the A.SW mouse. Here we provide evidence that loci on murine chromosome 6, and possibly chromosome 1, are involved in regulating susceptibility. Moreover, these loci overlap with loci implicated in other autoimmune diseases including diabetes in the NOD mouse. These two loci also regulate apoptosis in thymocytes as well as peripheral T cells in the NOD mouse, and we report further that A.SW mice demonstrate the same characteristics in apoptosis. These results suggest that common pathogenetic mechanisms involving apoptosis of both thymic and peripheral T cells are shared by multiple autoimmune diseases.  相似文献   

10.
Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers.  相似文献   

11.
MHC variation and tissue transplantation in fish   总被引:3,自引:0,他引:3  
Major histocompatibility complex (MHC) genes were originally discovered because of their role in tissue rejection in mammals and have subsequently been implicated in the incidence of autoimmune diseases and resistance to infectious diseases. Here we present the first demonstration that a gene defined by molecular sequence in the fish MHC, specifically a class II locus, plays an important role in tissue rejection. This effect in the endangered Gila topminnows appears to be additive and depends on the number of MHC alleles shared between the host and the recipient fish of the scale transplants. In addition, there was lower success of scale transplants in MHC-matched individuals in a population with high microsatellite variation than in a population with low variation. This suggests that other loci, presumably other MHC loci, play a significant role in transplantation success in fishes, as they do in mammals.  相似文献   

12.
The pathogenicity of multiple sclerosis is still poorly understood, but identification of susceptibility genes using the animal model experimental allergic encephalomyelitis (EAE) could provide leads. Certain genes may be shared between different autoimmune diseases, and identification of such genes is of obvious importance. To locate gene regions involved in the control of EAE and to compare the findings with the susceptibility loci recently identified in a model for rheumatoid arthritis (pristane-induced arthritis), we made crosses between the encephalomyelitis- and arthritis-susceptible rat strain DA and the resistant E3 strain. Genetic analysis of animals produced in a F2 intercross identified 11 loci associated with specific EAE-associated traits. Interestingly, five of these loci were situated at the same position as major loci controlling pristane-induced arthritis and showed similarities in inheritance pattern and subphenotype associations. Our results show that different phases of EAE are controlled by different sets of genes and that common genes are likely to be involved in different autoimmune diseases.  相似文献   

13.
Genetic variations in human leukocyte antigens (HLA) are critical in host responses to infections, transplantation, and immunological diseases. We previously identified associations with non-Hodgkin lymphoma (NHL) and the HLA-DRB1*01:01 allele and extended ancestral haplotype (AH) 8.1 (HLA-A*01-B*08-DR*03-TNF-308A). To illuminate how HLA alleles and haplotypes may influence NHL etiology, we examined potential interactions between HLA-DRB1*01:01 and AH 8.1, and a wide range of NHL risk factors among 685 NHL cases and 646 controls from a United States population-based case-control study. We calculated odds ratios and 95% confidence intervals by HLA allele or haplotype status, adjusted for sex, age, race and study center for NHL and two major subtypes using polychotomous unconditional logistic regression models. The previously reported elevation in NHL risk associated with exposures to termite treatment and polychlorinated biphenyls were restricted to individuals who did not possess HLA-DRB1*01:01. Previous associations for NHL and DLBCL with decreased sun exposure, higher BMI, and autoimmune conditions were statistically significant only among those with AH 8.1, and null among those without AH 8.1. Our results suggest that NHL risk factors vary in their association based on HLA-DRB1*01:01 and AH 8.1 status. Our results further suggest that certain NHL risk factors may act through a common mechanism to alter NHL risk. Finally, control participants with either HLA-DRB1*01:01 or AH 8.1 reported having a family history of NHL twice as likely as those who did not have either allele or haplotype, providing the first empirical evidence that HLA associations may explain some of the well-established relationship between family history and NHL risk.  相似文献   

14.

Background

Genetic and epigenetic factors interacting with the environment over time are the main causes of complex diseases such as autoimmune diseases (ADs). Among the environmental factors are organic solvents (OSs), which are chemical compounds used routinely in commercial industries. Since controversy exists over whether ADs are caused by OSs, a systematic review and meta-analysis were performed to assess the association between OSs and ADs.

Methods and Findings

The systematic search was done in the PubMed, SCOPUS, SciELO and LILACS databases up to February 2012. Any type of study that used accepted classification criteria for ADs and had information about exposure to OSs was selected. Out of a total of 103 articles retrieved, 33 were finally included in the meta-analysis. The final odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by the random effect model. A sensitivity analysis confirmed results were not sensitive to restrictions on the data included. Publication bias was trivial. Exposure to OSs was associated to systemic sclerosis, primary systemic vasculitis and multiple sclerosis individually and also to all the ADs evaluated and taken together as a single trait (OR: 1.54; 95% CI: 1.25–1.92; p-value<0.001).

Conclusion

Exposure to OSs is a risk factor for developing ADs. As a corollary, individuals with non-modifiable risk factors (i.e., familial autoimmunity or carrying genetic factors) should avoid any exposure to OSs in order to avoid increasing their risk of ADs.  相似文献   

15.
Crohn''s disease (CD) and celiac disease (CelD) are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general population. These observations suggest that CD and CelD may share common genetic risk loci. Two such shared loci, IL18RAP and PTPN2, have already been identified independently in these two diseases. The aim of our study was to explicitly identify shared risk loci for these diseases by combining results from genome-wide association study (GWAS) datasets of CD and CelD. Specifically, GWAS results from CelD (768 cases, 1,422 controls) and CD (3,230 cases, 4,829 controls) were combined in a meta-analysis. Nine independent regions had nominal association p-value <1.0×10−5 in this meta-analysis and showed evidence of association to the individual diseases in the original scans (p-value <1×10−2 in CelD and <1×10−3 in CD). These include the two previously reported shared loci, IL18RAP and PTPN2, with p-values of 3.37×10−8 and 6.39×10−9, respectively, in the meta-analysis. The other seven had not been reported as shared loci and thus were tested in additional CelD (3,149 cases and 4,714 controls) and CD (1,835 cases and 1,669 controls) cohorts. Two of these loci, TAGAP and PUS10, showed significant evidence of replication (Bonferroni corrected p-values <0.0071) in the combined CelD and CD replication cohorts and were firmly established as shared risk loci of genome-wide significance, with overall combined p-values of 1.55×10−10 and 1.38×10−11 respectively. Through a meta-analysis of GWAS data from CD and CelD, we have identified four shared risk loci: PTPN2, IL18RAP, TAGAP, and PUS10. The combined analysis of the two datasets provided the power, lacking in the individual GWAS for single diseases, to detect shared loci with a relatively small effect.  相似文献   

16.
Nova Scotia duck tolling retrievers are predisposed to a SLE-related disease complex including immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis–arteritis (SRMA). IMRD involves symptoms that resemble those seen in systemic autoimmune rheumatic diseases, such as systemic lupus erythematosus, SLE, or SLE-related diseases, in humans. This disease complex involves persistent lameness, stiffness, mainly after resting, and palpable pain from several joints of extremities. The majority of affected dogs display antinuclear autoantibody (ANA)-reactivity. SRMA is manifested in young dogs with high fever and neck stiffness and can be treated with corticosteroids. We have investigated the possible role of MHC class II as a genetic risk factor in IMRD and SRMA etiology. We performed sequence-based typing of the DLA-DRB1, -DQA1, and -DQB1 class II loci in a total of 176 dogs including 51 IMRD (33 ANA-positive), 49 SRMA cases, and 78 healthy controls (two dogs were both IMRD- and SRMA-affected). Homozygosity for the risk haplotype DRB1*00601/DQA1*005011/DQB1*02001 increased the risk for IMRD (OR?=?4.9; ANA-positive IMRD: OR?=?7.2) compared with all other genotypes. There was a general heterozygote advantage, homozygotes had OR?=?4.4 (ANA-positive IMRD: OR?=?8.9) compared with all heterozygotes. The risk haplotype contains the five amino acid epitope RARAA, known as the shared epitope for rheumatoid arthritis. No association was observed for SRMA. We conclude that DLA class II is a highly significant genetic risk factor for ANA-positive IMRD. The results indicate narrow diversity of DLA II haplotypes and identify an IMRD-related risk haplotype, which becomes highly significant in homozygous dogs.  相似文献   

17.
Genome-wide association (GWA) studies have identified numerous, replicable, genetic associations between common single nucleotide polymorphisms (SNPs) and risk of common autoimmune and inflammatory (immune-mediated) diseases, some of which are shared between two diseases. Along with epidemiological and clinical evidence, this suggests that some genetic risk factors may be shared across diseases-as is the case with alleles in the Major Histocompatibility Locus. In this work we evaluate the extent of this sharing for 107 immune disease-risk SNPs in seven diseases: celiac disease, Crohn's disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes. We have developed a novel statistic for Cross Phenotype Meta-Analysis (CPMA) which detects association of a SNP to multiple, but not necessarily all, phenotypes. With it, we find evidence that 47/107 (44%) immune-mediated disease risk SNPs are associated to multiple-but not all-immune-mediated diseases (SNP-wise P(CPMA)<0.01). We also show that distinct groups of interacting proteins are encoded near SNPs which predispose to the same subsets of diseases; we propose these as the mechanistic basis of shared disease risk. We are thus able to leverage genetic data across diseases to construct biological hypotheses about the underlying mechanism of pathogenesis.  相似文献   

18.
Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. It has previously been suggested to be associated with a variety of concomitant autoimmune diseases. In this review, we present data on the prevalence of IgAD in patients with Graves disease (GD), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), celiac disease (CD), myasthenia gravis (MG) and rheumatoid arthritis (RA) on the basis of both our own recent large-scale screening results and literature data. Genetic factors are important for the development of both IgAD and various autoimmune disorders, including GD, SLE, T1D, CD, MG and RA, and a strong association with the major histocompatibility complex (MHC) region has been reported. In addition, non-MHC genes, such as interferon-induced helicase 1 (IFIH1) and c-type lectin domain family 16, member A (CLEC16A), are also associated with the development of IgAD and some of the above diseases. This indicates a possible common genetic background. In this review, we present suggestive evidence for a shared genetic predisposition between these disorders.  相似文献   

19.
Type 1 diabetes mellitus is an autoimmune disease involving both environmental and genetic factors. Genetic analyses in humans and rodents have shown that the major histocompatibility complex (MHC) is a major genetic factor and that several other genes may be involved in the development of the disease. We performed genetic analysis of type 1 diabetes in a newly established animal model, the Komeda diabetes-prone (KDP) rat, and found that most of the genetic predisposition to diabetes is accounted for by two major susceptibility genes, MHC and Iddm/kdp1. In addition, we identified a nonsense mutation in the Casitas B-lineage lymphoma b (Cblb) gene by positional cloning of Iddm/kdp1. In this paper, I review our positional cloning analysis of Iddm/kdp1 and propose a two-gene model of the development of type 1 diabetes in which two major susceptibility genes, Cblb and MHC, determine autoimmune reaction and tissue specificity to pancreatic beta-cells, respectively.  相似文献   

20.
The development of most autoimmune diseases includes a strong heritable component. This genetic contribution to disease ranges from simple Mendelian inheritance of causative alleles to the complex interactions of multiple weak loci influencing risk. The genetic variants responsible for disease are being discovered through a range of strategies from linkage studies to genome-wide association studies. Despite the rapid advances in genetic analysis, substantial components of the heritable risk remain unexplained, either owing to the contribution of an as-yet unidentified, “hidden,” component of risk, or through the underappreciated effects of known risk loci. Surprisingly, despite the variation in genetic control, a great deal of conservation appears in the biological processes influenced by risk alleles, with several key immunological pathways being modified in autoimmune diseases covering a broad spectrum of clinical manifestations. The primary translational potential of this knowledge is in the rational design of new therapeutics to exploit the role of these key pathways in influencing disease. With significant further advances in understanding the genetic risk factors and their biological mechanisms, the possibility of genetically tailored (or “personalized”) therapy may be realized.Autoimmune diseases affect a significant proportion of the population, with >4% of the European population suffering from one or more of these disorders (Vyse and Todd 1996; Cooper et al. 2009; Eaton et al. 2010). Although all autoimmune diseases share similarities in the basic immunological mechanisms, in other aspects, such as clinical manifestation and age of onset, individual diseases vary widely. A few rare autoimmune diseases with Mendelian inheritance patterns within families occur including APS-1 (autoimmune polyendocrine syndrome type 1), IPEX (immunodysregulation, polyendocrinopathy, and enteropathy X-linked) syndrome, and ALPS (autoimmune lymphoproliferative syndrome). Most autoimmune diseases are, however, multifactorial in nature, with susceptibility controlled by multiple genetic and environmental factors.The genetic component of more common autoimmune diseases can be calculated in several different manners, including the sibling recurrence risk (λs) and the twin concordance rate. The sibling recurrence risk is the ratio of the lifetime risk in siblings of patients to the lifetime population risk, whereas the twin concordance rate measures the proportion of the siblings of affected twins that are also affected. Most common autoimmune diseases, such as multiple sclerosis (MS), type 1 diabetes (T1D), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD) are characterized by a sibling recurrence risk between 6 and 20 (Vyse and Todd 1996), and concordance rates of 25%–50% in monozygotic twins and 2%–12% in dizygotic twins (Cooper et al. 1999). A substantial proportion of relatives may also have subclinical evidence of autoimmunity without developing clinically overt disease. For example, 19% of healthy siblings of MS patients show antibody production in the cerebrospinal fluid, compared to 4% of unrelated healthy controls (Haghighi et al. 2000), whereas 4% of healthy first-degree relatives display lesions that are indistinguishable from those seen in patients and are not seen in unrelated healthy controls (De Stefano et al. 2006). Furthermore, comorbidity with the development of several autoimmune diseases in the same patient and clustering of several autoimmune diseases within families above what is expected by chance appear common (Cooper et al. 2009; Zhernakova et al. 2009). Together these data show a strong genetic component to autoimmune disease development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号