首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ciprofloxacin (CPFX) and enrofloxacin (ENFX) are 2 representatives of widely used fluoroquinolones (FQs) with many human and veterinary applications. The residues of FQs in the environment are potentially harmful. Recently, great concern has been paid to their persistence and fate in the environment because of the potential adverse effects on humans and ecosystem functions. In the present study, we examined the interactions of bovine hemoglobin (BHb) with these 2 FQs by means of multiple spectroscopic and molecular docking methods under physiological conditions. The experimental results revealed that both FQs could bind with BHb to form complexes mainly through electrostatic interactions. And CPFX posed more of an affinity threat to BHb than ENFX. On the basis of molecular docking, both FQs could bind into the central cavity of BHb and interact with the residue Trp 37, resulting in the remarkable fluorescence quenching of protein. Additionally, as shown by the synchronous fluorescence, UV‐visible absorption and circular dichroism data, both CPFX and ENFX could lead to the conformational and microenvironmental changes of BHb, which may affect its physiological functions. The work is beneficial for understanding the biological toxicity of FQs in vivo.  相似文献   

2.
Tartrazine is a stable water‐soluble azo dye widely used as a food additive, which could pose potential threats to humans and the environment. In this paper, we evaluated the response mechanism between tartrazine and lysozyme under simulated conditions by means of biophysical methods, including multiple spectroscopic techniques, isothermal titration calorimetry (ITC), and molecular docking studies. From the multispectroscopic analysis, we found that tartrazine could effectively quench the intrinsic fluorescence of lysozyme to form a complex and lead to the conformational and microenvironmental changes of the enzyme. The ITC measurements suggested that the electrostatic forces played a major role in the binding of tartrazine to lysozyme with two binding sites. Finally, the molecular docking indicated that tartrazine had specific interactions with the residues of Trp108. The study provides an important insight within the binding mechanism of tartrazine to lysozyme in vitro.  相似文献   

3.
Linezolid, one of the reserve antibiotic of oxazolidinone class has wide range of antimicrobial activity. Here we have conducted a fundamental study concerning the dynamics of its interaction with bovine serum albumin (BSA), and the post binding modification of the later by employing different spectroscopic (absorption, fluorescence and circular dichroism (CD) spectroscopy) and molecular docking tools. Gradual quenching of the tryptophan (Trp) fluorescence upon addition of linezolid to BSA confirms their interaction. Analysis of fluorescence quenching at different temperature indicates that the interaction is made by static complex formation and the BSA has one binding site for the drug. The negative Gibbs energy change (ΔG0), and positive values of enthalpy change (ΔH0) and entropy change (ΔS0) strongly suggest that it is an entropy driven spontaneous and endothermic reaction. The reaction involves hydrophobic pocket of the protein, which is further stabilized by hydrogen bonding and electrostatic interactions as evidenced from 8-anilino-1-napthalene sulfonic acid, sucrose and NaCl binding studies. These findings also support the molecular docking study using AutoDock 4.2. The influence of this interaction on the secondary structure of the protein is negligible as evidenced by CD spectroscopy. So, from these findings, we conclude that linezolid interacts with BSA in 1:1 ratio through hydrophobic, hydrogen bonding and ionic interactions, and this may not affect the secondary structure of the protein.  相似文献   

4.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Herein, the binding of 1-methyl-3-octylimidazolium chloride [OMIM][Cl] ionic liquid with hen egg white lysozyme (HEWL) has been studied using fluorescence, time resolved fluorescence, UV–visible and circular dichroism (CD) spectroscopy, in combination with computational study. The fluorescence results revealed that [OMIM][Cl] quenches the fluorophore of HEWL through static quenching mechanism. The calculated thermodynamic parameters show that [OMIM][Cl] bind with HEWL through hydrophobic interactions. In addition, the negative value of Gibbs energy change (?G) indicates that the binding process was spontaneous. Furthermore, UV–vis and CD results indicate that [OMIM][Cl] induce the conformational change in HEWL and increase its enzymatic activity. Additionally, molecular docking results showed that [OMIM][Cl] binds at the active site of HEWL where both the fluorophore residues (Trp108 and Trp62) and the catalytic residues (Glu35 and Asp52) reside. Molecular dynamic simulation results show the reduction of intra-molecular hydrogen bond of HEWL when it binds with [OMIM][Cl].  相似文献   

6.
The interaction between the food colorant canthaxanthin (CA) and human serum albumin (HSA) in aqueous solution was explored by using fluorescence spectroscopy, three‐dimensional fluorescence spectra, synchronous fluorescence spectra, UV–vis absorbance spectroscopy, circular dichroism (CD) spectra and molecular docking methods. The thermodynamic parameters calculated from fluorescence spectra data showed that CA could result in the HSA fluorescence quenching. From the KSV change with the temperature dependence, it was concluded that HSA fluorescence quenching triggered by CA is the static quenching and the number of binding sites is one. Furthermore, the secondary structure of HSA was changed with the addition of CA based on the results of synchronous fluorescence, three‐dimensional fluorescence and CD spectra. Hydrogen bonds and van der Waals forces played key roles in the binding process of CA with HSA, which can be obtained from negative standard enthalpy (ΔH) and negative standard entropy (ΔS). Furthermore, the conclusions were certified by molecular docking studies and the binding mode was further analyzed with Discovery Studio. These conclusions can highlight the potential of the interaction mechanism of food additives and HSA.  相似文献   

7.
The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV–vis absorption spectroscopy (UV–vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT‐IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady‐state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >1010 L mol?1 sec?1. This result indicates that the ENPL–BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0), enthalpic change (ΔH 0) and entropic change (ΔS 0). The binding of ENPL with BSA is an enthalpy‐driven process due to |ΔH °| > |T ΔS °| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub‐domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α‐helical secondary structure.  相似文献   

8.
Arginine kinase plays a vital role in invertebrate homeostasis by buffering ATP concentrations. Arginine kinase might serve as a target for environmentally friendly insect-selective pesticides, because it differs notably from its counterpart in vertebrates, creatine kinase. In this study, two members of the flavonoid family, quercetin (QU) and luteolin (LU), were identified as novel noncompetitive inhibitors of locust arginine kinase. They were found to have inhibition parameters (Ki) of 11.2 and 23.9 μM, respectively. By comparing changes in the activity and intrinsic fluorescence of AK, the inhibition mechanisms of these flavonoids were found to involve binding to Trp residues in the active site. This was determined by examination of the static quenching parameter Ksv. The main binding forces between flavonoids and AK were found to be hydrophobic based on the thermodynamic parameters of changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) and on docking simulation results. Molecular docking analyses also suggested that flavonoids could bind to the active site of AK and were close to the Trp 221 in active site. Molecular simulation results mimic the experimental results, indicated that QU had a lower binding energy and a stronger inhibitory effect on AK than LU, suggesting that the extra hydroxyl group in QU might increase binding ability.  相似文献   

9.
Optical spectroscopy and molecular docking methods were used to examine the binding of aristolochic acid I (AAI) to human serum albumin (HSA) in this paper. By monitoring the intrinsic fluorescence of single Trp214 residue and performing displacement measurements, the specific binding of AAI in the vicinity of Sudlow's Site I of HSA has been clarified. An apparent distance of 2.53 nm between the Trp214 and AAI was obtained via fluorescence resonance energy transfer (FRET) method. In addition, the changes in the secondary structure of HSA after its complexation with the ligand were studied with circular dichroism (CD) spectroscopy, which indicated that AAI does not has remarkable effect on the structure of the protein. Moreover, thermal denaturation experiments clearly indicated that the HSA−AAI complexes are conformationally more stable. Finally, the binding details between AAI and HSA were further confirmed by molecular docking studies, which revealed that AAI was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, van der Waals forces and hydrogen bonding.  相似文献   

10.
A comparative study of interaction between chicken egg white lysozyme (Lyz) with two hexavalent chromate ions; chromate and dichromate; which are prevalently known for their toxicity, was investigated using different spectroscopic techniques along with a molecular docking study. Both steady-state and time-resolved studies revealed that the addition of chromate/dichromate is responsible for strong quenching of intrinsic fluorescence in Lyz and the quenching is caused by both static and dynamic quenching mechanisms. Different binding and thermodynamic parameters were also calculated at different temperatures from the intrinsic fluorescence of Lyz. The conformational change in Lyz and thermodynamic parameters obtained during the course of interaction with chromate/dichromate were well-supported by the molecular docking results.  相似文献   

11.
Abstract

The interaction of 6-hydroxyflavone (6HF) with hen egg white lysozyme (HEWL) has been executed using multi-spectroscopic and computational methods. Steady state fluorescence studies indicated that static quenching mechanism is involved in the binding of 6HF with HEWL, which was further supported by excited state lifetime and UV–vis absorption studies. The binding constant (Kb) of the HEWL–6HF complex was observed to be 6.44?±?0.09?×?104 M?1 at 293?K, which decreases with the increase in temperature. The calculation of the thermodynamic quantities showed that the binding is exothermic in nature with a negative enthalpy change (ΔH = ?11.91?±?1.02?kJ mol?1) along with a positive entropy change (ΔS = +51.36?±?2.43 J K?1 mol?1), and the major forces responsible for the binding are hydrogen bonding and hydrophobic interactions. The possibility of energy transfer from tryptophan (Trp) residue to the 6HF ligand was observed from Fo¨rster’s theory. The inclusion of 6HF within the binding site of HEWL induces some micro-environmental changes around the Trp residues as indicated by synchronous and three-dimensional (3D) fluorescence studies. The changes in secondary structural components of HEWL are observed on binding with 6HF along with a reduction in % α-helical content. Computational studies correlate well with the experimental finding, and the ligand 6HF is found to bind near to Trp 62 and Trp 63 residues of HEWL. Altogether, the present study provides an insight into the interaction dynamics and energetics of the binding of 6HF to HEWL.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
The interaction between N‐acetyl cysteine (NAC) and bovine serum albumin (BSA) was investigated by UV–vis, fluorescence spectroscopy, and molecular docking methods. Fluorescence study at three different temperatures indicated that the fluorescence intensity of BSA was reduced upon the addition of NAC by the static quenching mechanism. Binding constant (Kb) and the number of binding sites (n) were determined. The binding constant for the interaction of NAC and BSA was in the order of 103 M?1, and the number of binding sites was obtained to be equal to 1. Enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) as thermodynamic values were also achieved by van't Hoff equation. Hydrogen bonding and van der Waals force were the major intermolecular forces in the interaction process and it was spontaneous. Finally, the binding mode and the binding sites were clarified using molecular docking which were in good agreement with the results of spectroscopy experiments. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 638–645, 2015.  相似文献   

13.
The interactions of imidazolium bashed ionic liquid-type cationic gemini surfactant ([C12-4-C12im]Br2) with HSA were studied by fluorescence, time-resolved fluorescence, UV-visible, circular dichroism, molecular docking and molecular dynamic simulation methods. The results showed that the [C12-4-C12im]Br2 quenched the fluorescence of HSA through dynamic quenching mechanism as confirmed by time-resolved spectroscopy. The Stern–Volmer quenching constant (Ksv) and relevant thermodynamic parameters such as enthalpy change (ΔH), Gibbs free energy change (ΔG) and entropy change (ΔS) for interaction system were calculated at different temperatures. The results revealed that hydrophobic forces played a major role in the interactions process. The results of synchronous fluorescence, UV-visible and CD spectra demonstrated that the binding of [C12-4-C12im]Br2 with HSA induces conformational changes in HSA. Inquisitively, the molecular dynamics study contribute towards understanding the effect of binding of [C12-4-C12im]Br2 on HSA to interpret the conformational change in HSA upon binding in aqueous solution. Moreover, the molecular modelling results show the possible binding sites in the interaction system.  相似文献   

14.
The interaction between myricetin and dihydromyricetin with trypsin, α-chymotrypsin and lysozyme was investigated using multispectral and molecular docking methods. The results of fluorescence quenching revealed that myricetin and dihydromyricetin could quench the intrinsic fluorescence of three different proteinases through a static quenching procedure. The binding constant and number of binding sites at different temperatures were measured. The thermodynamic parameters obtained at different temperatures showed van der Waals interactions and hydrogen bonds played the main roles in the interaction of myricetin with trypsin and lysozyme, hydrophobic force was dominant both in myricetin with α-chymotrypsin interaction and dihydromyricetin with trypsin and lysozyme interaction, as for the electrostatic forces, it was mainly the driving force in dihydromyricetin binding to α-chymotrypsin. There was non-radiative energy transfer between three proteinases and myricetin or dihydromyricetin with high probability. The microenvironment of trypsin, α-chymotrypsin and lysozyme is changed. The docking studies revealed that myricetin and dihydromyricetin entered the hydrophobic cavity of three proteinases and formed hydrogen bonds. The binding affinity of myricetin or dihydromyricetin is different with the trypsin, α-chymotrypsin and lysozyme due to the different molecular structure.  相似文献   

15.
The interactions between human serum albumin (HSA) and fluphenazine (FPZ) in the presence or absence of rutin or quercetin were studied by fluorescence, absorption and circular dichroism (CD) spectroscopy and molecular modeling. The results showed that the fluorescence quenching mechanism was static quenching by the formation of an HSA–FPZ complex. Entropy change (ΔS 0) and enthalpy change (ΔH 0) values were 68.42 J/(mol? K) and ?4.637 kJ/mol, respectively, which indicated that hydrophobic interactions and hydrogen bonds played major roles in the acting forces. The interaction process was spontaneous because the Gibbs free energy change (ΔG 0) values were negative. The results of competitive experiments demonstrated that FPZ was mainly located within HSA site I (sub‐domain IIA). Molecular docking results were in agreement with the experimental conclusions of the thermodynamic parameters and competition experiments. Competitive binding to HSA between flavonoids and FPZ decreased the association constants and increased the binding distances of FPZ binding to HSA. The results of absorption, synchronous fluorescence, three‐dimensional fluorescence, and CD spectra showed that the binding of FPZ to HSA caused conformational changes in HSA and simultaneous effects of FPZ and flavonoids induced further HSA conformational changes.  相似文献   

16.
The interaction of the cationic Gemini surfactant hexamethylene‐1,3‐bis (tetradecyldimethylammonium bromide) (14‐6‐14) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra and three‐dimensional (3D) fluorescence spectra. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that hydrophobic forces were the predominant intermolecular forces between BSA and the surfactant. Competitive experiments and the number of binding sites calculation show that 14‐6‐14 can be inserted in site‐II (in subdomain IIIA) of BSA. The effect of 14‐6‐14 on the conformation of BSA was evaluated by synchronous fluorescence spectroscopy and 3D fluorescence spectral methods. The results show that the conformation of BSA was changed dramatically in the presence of 14‐6‐14, by binding to the Trp and Try residues of BSA. The investigation provides interaction between BSA and 14‐6‐14 as a model for molecular design and industrial research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The conformational change of hen egg-white lysozyme (EC 3.2.1.17) induced by the interaction with tri-N-acetyl-D-glucosamine were investigated by steady state and time-resolved fluorescence spectroscopy. To identify more clearly the conformation of hen egg-white lysozyme interacting with the ligand, the fluorescence decay kinetics of the lysozyme and its complex with the ligand were precisely measured at their full spectral regions. The spectral analysis based on the time-resolved studies showed that the binding of the ligand affected not only the Trp62 directly linked to the ligand but its influence was extended to the vicinity of Trp108 and further to the hydrophobic matrix box region. Near the binding site, the intramolecular distance between Trp108 and Glu35 was expanded or contracted depending on the pH of the buffer solution. On the other hand, the interaction of Trp28 and/or Trp111 with their surroundings was reduced by restriction of fluctuational motions at the hydrophobic matrix box region.  相似文献   

18.
In this article, a facile and convenient synthesis of thiazol‐2(3H)‐ylidine derivatives of fatty acid ( 3a – c ) is described. The binding of N′‐(4,5‐dimethyl‐3‐penylthiazol‐2(3H)‐ylidine)octadec‐9‐enehydrazide ( 3a ) with human serum albumin (HSA) is explored using various spectral methods and molecular docking. Fluorescence quenching results show that 3a induces conformational changes in HSA and the polarity around the tryptophan residues is increased. Stern–Volmer quenching plots at different temperatures (298, 305 and 312 K) show that the fluorescence quenching mechanism is static quenching. Synchronous fluorescence, 3D fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy are used to determine the structural change in HSA on interaction with 3a . Förster resonance energy transfer analysis shows that the binding distance (r0 = 2.78 nm) between HSA (Trp214) and 3a is within the of range 2–8 nm for quenching to occur. The molecular docking study also confirms that 3a is located in subdomain IIA (site I) of HSA and is stabilized by hydrogen bonding and hydrophobic forces.  相似文献   

19.
The binding of the apolar fluorescent dye 8-anilinonaphthalene-1-sulfonate (ANS) to bovine serum albumin (BSA), phospholipase A2 (PLA2), ovalbumin, lysozyme, cobrotoxin and N-acetyltryptophanamide was used to assess the factors affecting the efficiency of energy transfer from Trp residues to the ANS molecule. We found that the efficiency of energy transfer from Trp residues to ANS was associated with the ability of proteins to enhance the ANS fluorescence. At the same molar concentration of protein, BSA enhanced ANS fluorescence most among these proteins; its Trp fluorescence was drastically quenched by the addition of ANS. Fluorescence enhancement of ANS in PLA2-ANS complex increased upon addition of Ca2+ or change of the buffer to acidicpH, resulting in a higher efficiency of energy transfer from Trp residues to ANS. There was limited ANS fluorescence enhancement with ovalbumin, lysozyme, cobrotoxin, and N-acetyltryptophanamide and a less efficient quenching in Trp fluorescence. The capabilities of proteins for binding with ANS correlated with the decrease in their Trp fluorescence being quenching by ANS. However, the microenvironment surrounding Trp residues of proteins did not affect the energy transfer. Based on these results, the factors that affected the energy transfer from Trp residues to ANS are discussed.  相似文献   

20.
Etoricoxib, widely used for the treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and related conditions has ample affinity to bind with globular proteins. Here, the molecular interaction between purified human hemoglobin (HHb), a major heme protein and etoricoxib, a cyclooxygenase-2 inhibitor was studied by various spectroscopic, calorimetric, and molecular modeling techniques. The binding affected hypochromic changes in the Soret band of hemoglobin (Hb) and induced remarkable quenching of the intrinsic fluorescence property of protein molecules. Synchronous fluorescence studies revealed alterations in tryptophan (Trp) and tyrosine (Tyr) microenvironments of HHb molecule in presence of etoricoxib. Flouremetric and isothermal titration calorimetric studies suggested two binding sites in HHb for etoricoxib at three different temperatures (298.15, 303.15, and 310.15 K). Negative values of Gibbs energy change (ΔG0) and enthalpy change (ΔH0) strongly suggest that it is spontaneous and exothermic reaction, mainly stabilized by hydrogen bonding as evidenced by sucrose binding assay. These findings support our in silico molecular docking study, which specified the binding site and the non-covalent interactions involved in the association. Moreover, the interaction impacts on structural integrity and functional aspects of HHb as confirmed by decreased α helicity, increased free iron release, increased rate of co-oxidation, and decreased rate of esterase activity. Overall, these studies conclude that etoricoxib leads to a remarkable alteration in the conformational aspects of binding to HHb.

Communicated by Ramaswamy H. Sarma.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号