首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of influenza A virus M1 matrix protein with caspases   总被引:8,自引:0,他引:8  
In this investigation, an ability of influenza A virus M1 matrix protein to bind intracellular caspases, the key enzymes of cell apoptosis, has been examined. Protein–protein binding on polystyrene plates and polyvinyl pyrrolidone membrane was employed for this purpose. Under a comparative study of caspases-3, -6, -7, -8 influenza virus M1 protein specifically bound caspase-8 and weakly bound caspase-7. Using a computer analysis of the N-terminal region of M1 protein, a site similar to the anti-caspase site of baculovirus p35 protein, which inhibits caspases and displays antiapoptotic activity, was identified. These results are in good agreement with the supposition that influenza virus M1 protein is involved in a caspase-8-mediated apoptosis pathway in influenza virus infected cells.  相似文献   

2.
Sulfatide is abundantly expressed in various mammalian organs, including the intestines and trachea, in which influenza A viruses (IAVs) replicate. However, the function of sulfatide in IAV infection remains unknown. Sulfatide is synthesized by two transferases, ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST), and is degraded by arylsulfatase A (ASA). In this study, we demonstrated that sulfatide enhanced IAV replication through efficient translocation of the newly synthesized IAV nucleoprotein (NP) from the nucleus to the cytoplasm, by using genetically produced cells in which sulfatide expression was down-regulated by RNA interference against CST mRNA or overexpression of the ASA gene and in which sulfatide expression was up-regulated by overexpression of both the CST and CGT genes. Treatment of IAV-infected cells with an antisulfatide monoclonal antibody (MAb) or an anti-hemagglutinin (HA) MAb, which blocks the binding of IAV and sulfatide, resulted in a significant reduction in IAV replication and accumulation of the viral NP in the nucleus. Furthermore, antisulfatide MAb protected mice against lethal challenge with pathogenic influenza A/WSN/33 (H1N1) virus. These results indicate that association of sulfatide with HA delivered to the cell surface induces translocation of the newly synthesized IAV ribonucleoprotein complexes from the nucleus to the cytoplasm. Our findings provide new insights into IAV replication and suggest new therapeutic strategies.  相似文献   

3.
RNA-binding properties of influenza A virus matrix protein M1.   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

4.
Cao S  Liu X  Yu M  Li J  Jia X  Bi Y  Sun L  Gao GF  Liu W 《Journal of virology》2012,86(9):4883-4891
The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.  相似文献   

5.
A deletion mutation affecting vpu was introduced into an infectious molecular clone of human immunodeficiency virus type 1, and the resultant phenotype was examined after infection of human T lymphocytes. The absence of vpu resulted in an accumulation of cell-associated viral proteins and impaired the release of progeny virions. Both electron microscopic and biochemical analyses indicated that a large proportion of the mutant particles was attached to the surface of infected cells. Significant variation in the size and shape of these progeny virions was observed. In addition, intracytoplasmic particles, some of which formed aberrant budding structures, were visualized in T cells infected with the vpu mutant. Indirect immunofluorescence analyses of cultures inoculated with wild-type virus with use of a vpu-specific antiserum demonstrated that vpu is mainly localized to a perinuclear region in the cytoplasm of virus-producing cells.  相似文献   

6.
Although many organic anion transport protein (Oatp) family members have PDZ consensus binding sites at their C termini, the functional significance is unknown. In the present study, we utilized rat Oatp1a1 (NM_017111) as a prototypical member of this family to examine the mechanism governing its subcellular trafficking. A peptide corresponding to the C-terminal 16 amino acids of rat Oatp1a1 was used to affinity-isolate interacting proteins from rat liver cytosol. Protein mass fingerprinting identified PDZK1 as the major interacting protein. This was confirmed by immunoprecipitation of an Oatp1a1-PDZK1 complex from cotransfected 293T cells as well as from native rat liver membrane extracts. Oatp1a1 bound predominantly to the first and third PDZ binding domains of PDZK1, whereas the high density lipoprotein receptor, scavenger receptor B type I binds to the first domain. Although it is possible that PDZK1 forms a complex with these two integral membrane proteins, this did not occur, suggesting that as yet undescribed factors lead to selectivity in the interaction of these protein ligands with PDZK1. Oatp1a1 protein expression was near normal in PDZK1 knock-out mouse liver. However, it was located predominantly in intracellular structures, in contrast to its normal basolateral plasma membrane distribution. Plasma disappearance of the Oatp1a1 ligand [35S]sulfobromophthalein was correspondingly delayed in knock-out mice. These studies show a critical role for oligomerization of Oatp1a1 with PDZK1 for its proper subcellular localization and function. Because its ability to transport substances into the cell requires surface expression, this must be considered in any assessment of physiologic function.  相似文献   

7.
Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA-Argonaute complex--or miRNA-induced silencing complex (miRISC)--can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression.  相似文献   

8.
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.  相似文献   

9.
Monoclonal antibodies were used to study antigenic variation in three distinct epitopes on the matrix protein of influenza A viruses. We found that two of these epitopes underwent antigenic variation, but in a very limited number of virus strains. A third epitope appeared to be an invariant type-specific determinant for influenza A viruses. Competitive antibody binding assays and Western blot analysis of proteolytically digested matrix protein indicated that at least two of the three epitopes are located in nonoverlapping domains on the matrix protein molecule.  相似文献   

10.
11.
The large conductance calcium-activated potassium channel, or BKCa channel, plays an important feedback role in a variety of physiological processes, including neurotransmitter release and smooth muscle contraction. Some reports have suggested that this channel forms a stable complex with regulators of its function, including several kinases and phosphatases. To further define such signaling complexes, we used the yeast two-hybrid system to screen a human aorta cDNA library for proteins that bind to the BKCa channel's intracellular, COOH-terminal "tail". One of the interactors we identified is the protein receptor for activated C kinase 1 (RACK1). RACK1 is a member of the WD40 protein family, which also includes the G protein -subunits. Consistent with an important role in BKCa-channel regulation, RACK1 has been shown to be a scaffolding protein that interacts with a wide variety of signaling molecules, including cSRC and PKC. We have confirmed the interaction between RACK1 and the BKCa channel biochemically with GST pull-down and coimmunoprecipitation experiments. We have observed some co-localization of RACK1 with the BKCa channel in vascular smooth muscle cells with immunocytochemical experiments, and we have found that RACK1 has effects on the BKCa channel's biophysical properties. Thus RACK1 binds to the BKCa channel and it may form part of a BKCa-channel regulatory complex in vascular smooth muscle. calcium-activated potassium channel; protein kinase C; smooth muscle  相似文献   

12.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

13.
Influenza A virus (IAV) enters host cells by endocytosis followed by acid-activated penetration from late endosomes (LEs). Using siRNA silencing, we found that histone deacetylase 8 (HDAC8), a cytoplasmic enzyme, efficiently promoted productive entry of IAV into tissue culture cells, whereas HDAC1 suppressed it. HDAC8 enhanced endocytosis, acidification, and penetration of the incoming virus. In contrast, HDAC1 inhibited acidification and penetration. The effects were connected with dramatic alterations in the organization of the microtubule system, and, as a consequence, a change in the behavior of LEs and lysosomes (LYs). Depletion of HDAC8 caused loss of centrosome-associated microtubules and loss of directed centripetal movement of LEs, dispersing LE/LYs to the cell periphery. For HDAC1, the picture was the opposite. To explain these changes, centrosome cohesion emerged as the critical factor. Depletion of HDAC8 caused centrosome splitting, which could also be induced by depleting a centriole-linker protein, rootletin. In both cases, IAV infection was inhibited. HDAC1 depletion reduced the splitting of centrosomes, and enhanced infection. The longer the distance between centrosomes, the lower the level of infection. HDAC8 depletion was also found to inhibit infection of Uukuniemi virus (a bunyavirus) suggesting common requirements among late penetrating enveloped viruses. The results established class I HDACs as powerful regulators of microtubule organization, centrosome function, endosome maturation, and infection by IAV and other late penetrating viruses.  相似文献   

14.
15.
Mog1 is a nuclear protein that interacts with Ran, the Ras family GTPase that confers directionality to nuclear import and export pathways. Deletion of MOG1 in Saccharomyces cerevisiae (Deltamog1) causes temperature-sensitive growth and defects in nuclear protein import. Mog1 has previously been shown to stimulate GTP release from Ran and we demonstrate here that addition of Mog1 to either Ran-GTP or Ran-GDP results in nucleotide release and formation of a stable complex between Mog1 and nucleotide-free Ran. Moreover, MOG1 shows synthetic lethality with PRP20, the Ran guanine nucleotide exchange factor (RanGEF) that also binds nucleotide-free Ran. To probe the functional role of the Mog1-Ran interaction, we engineered mutants of yeast Mog1 and Ran that specifically disrupt their interaction both in vitro and in vivo. These mutants indicate that the interaction interface involves conserved Mog1p residues Asp(62) and Glu(65), and residue Lys(136) in yeast Ran. Mutations at these residues decrease the ability of Mog1 to bind and release nucleotide from Ran. Furthermore, the E65K-Mog1 and K136E-Ran mutations in yeast cause temperature sensitivity and mislocalization of a nuclear import reporter protein, similar to the phenotype observed for the Deltamog1 strain. Our results indicate that a primary function of Mog1 requires binding to Ran and that the Mog1-Ran interaction is necessary for efficient nuclear protein import in vivo.  相似文献   

16.
Exposure of macrophages to endotoxin [lipopolysaccharide (LPS)] results in a cascade of events resulting in the release of multiple inflammatory and anti-inflammatory mediators. The Toll-like receptor (TLR) 4 complex is the major receptor that mediates LPS signaling. However, there is evidence that other surface molecules may play a complementary role in the TLR-induced events. Integrin receptors are one class of receptors that have been linked to LPS signaling. This study investigates the role of macrophage integrin receptors in the activation of mitogen-activated protein (MAP) kinases by LPS. In conditions where macrophages were not permitted to adhere to matrix or a tissue culture surface, we found a decrease in LPS signaling as documented by a marked reduction in tyrosine phosphorylation of whole cell proteins. This was accompanied by a significant decrease in extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase MAP kinase activation. Inhibition of integrin signaling, with EDTA or RGD peptides, decreased LPS-induced MAP kinase activity. The functional consequence of blocking integrin signaling was demonstrated by decreased LPS-induced tumor necrosis factor-alpha production. These observations demonstrate that, in addition to the TLR receptor complex, optimal LPS signaling requires complementary signals from integrin receptors.  相似文献   

17.
18.
19.
20.
The matrix protein (MA) of the Moloney murine leukemia virus (M-MuLV) was found to interact with IQGAP1, a prominent regulator of the cytoskeleton. Mutational studies defined residues of MA critical for the interaction, and tests of viruses carrying MA mutations revealed a near-perfect correlation between binding and virus replication. The replication-defective mutants showed defects in both early and late stages of the life cycle. Four viable second-site revertant viruses were isolated from three different replication-defective parental mutants, and in all cases the interaction with IQGAP1 was restored by the suppressor mutations. The interaction of MA and IQGAP1 was readily detected in vitro and in vivo. Virus replication was potently inhibited by a C-terminal fragment of IQGAP1, and impaired by RNAi knockdown of IQGAP1 and 2. We suggest that the IQGAPs link the virus to the cytoskeleton for trafficking both into and out of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号