首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyl radical, generated by reduction of hydrogen peroxide by Fe(II)-EDTA, was used to investigate the contact sites of yeast tRNA(Tyr) with its cognate tyrosyl-tRNA synthetase (TyrRS). Exposure of free tRNA(Tyr) to this reagent gave cleavage patterns consistent with the tertiary structure of yeast tRNA(Phe) established by X-ray crystallography. When the probing reaction was performed under the conditions which stabilized complex formation between tRNA(Tyr) and TyrRS, aminoacyl-stem region of the tRNA was protected from cleavage. This result supports our earlier finding that the information for binding to TyrRS would reside mainly in the aminoacyl-stem of tRNA(Tyr).  相似文献   

2.
A suppressor tRNA(Tyr) and mutant tyrosyl-tRNA synthetase (TyrRS) pair was developed to incorporate 3-iodo-L-tyrosine into proteins in mammalian cells. First, the Escherichia coli suppressor tRNA(Tyr) gene was mutated, at three positions in the D arm, to generate the internal promoter for expression. However, this tRNA, together with the cognate TyrRS, failed to exhibit suppressor activity in mammalian cells. Then, we found that amber suppression can occur with the heterologous pair of E.coli TyrRS and Bacillus stearothermophilus suppressor tRNA(Tyr), which naturally contains the promoter sequence. Furthermore, the efficiency of this suppression was significantly improved when the suppressor tRNA was expressed from a gene cluster, in which the tRNA gene was tandemly repeated nine times in the same direction. For incorporation of 3-iodo-L-tyrosine, its specific E.coli TyrRS variant, TyrRS(V37C195), which we recently created, was expressed in mammalian cells, together with the B.stearothermophilus suppressor tRNA(Tyr), while 3-iodo-L-tyrosine was supplied in the growth medium. 3-Iodo-L-tyrosine was thus incorporated into the proteins at amber positions, with an occupancy of >95%. Finally, we demonstrated conditional 3-iodo-L-tyrosine incorporation, regulated by inducible expression of the TyrRS(V37C195) gene from a tetracycline-regulated promoter.  相似文献   

3.
Tyrosyl-tRNA synthetase (TyrRS) catalyzes the tyrosylation of tRNA(Tyr) in a two-step reaction. TyrRS has the "HIGH" and "KMSKS" motifs, which play essential roles in the formation of the tyrosyl-adenylate from tyrosine and ATP. Here, we determined the crystal structures of Archaeoglobus fulgidus and Pyrococcus horikoshii TyrRSs in the l-tyrosine-bound form at 1.8A and 2.2A resolutions, respectively, and that of Aeropyrum pernix TyrRS in the substrate-free form at 2.2 A. The conformation of the KMSKS motif differs among the three TyrRSs. In the A.pernix TyrRS, the KMSKS loop conformation corresponds to the ATP-bound "closed" form. In contrast, the KMSKS loop of the P.horikoshii TyrRS forms a novel 3(10) helix, which appears to correspond to the "semi-closed" form. This conformation enlarges the entrance to the tyrosine-binding pocket, which facilitates the pyrophosphate ion release after the tyrosyl-adenylate formation, and probably is involved in the initial tRNA binding. The KMSSS loop of the A.fulgidus TyrRS is somewhat farther from the active site and is stabilized by hydrogen bonds. Based on the three structures, possible structural changes of the KMSKS motif during the tyrosine activation reaction are discussed. We suggest that the insertion sequence just before the KMSKS motif, which exists in some archaeal species, enhances the binding affinity of the TyrRS for its cognate tRNA. In addition, a non-proline cis peptide bond, which is involved in the tRNA binding, is conserved among the archaeal TyrRSs.  相似文献   

4.
5.
The Methanococcus jannaschii tRNA(Tyr)/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-L-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 A, respectively, for comparison with the published structure of TyrRS complexed with tRNA(Tyr) and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257-263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through pi-stacking and hydrogen bonding interactions. Loop 133-143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNA(Tyr). Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133-143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over L-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids.  相似文献   

6.
Liu J  Yang XL  Ewalt KL  Schimmel P 《Biochemistry》2002,41(48):14232-14237
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. A link was recently established between protein biosynthesis and cytokine signal transduction. Human tyrosyl-tRNA synthetase can be split into two fragments, each of which has a distinct cytokine function. This activity is specific to the human enzyme. It is absent in the enzymes from lower organisms such as bacteria and yeast. Here, yeast tyrosyl-tRNA synthetase (TyrRS), which lacks cytokine activity, was used as a model to explore how a human tyrosyl-tRNA synthetase during evolution acquired novel functions beyond aminoacylation. We found that a rationally designed mutant yeast TyrRS(ELR) gained cytokine function. The mutant yeast enzyme gained this function without sacrifice of aminoacylation activity. Therefore, relatively simple alteration of a basic structural motif imparts cytokine activity to a tRNA synthetase while preserving its canonical function. Further work established that mutational switching of a yeast protein to a mammalian-like cytokine was specific to this synthetase and not to just any yeast ortholog of a mammalian cytokine.  相似文献   

7.
Tyrosyl-tRNA synthetase (TyrRS) is able to catalyze the transfer of both l- and d-tyrosine to the 3' end of tRNA(Tyr). Activation of either stereoisomer by ATP results in formation of an enzyme-bound tyrosyl-adenylate intermediate and is accompanied by a blue shift in the intrinsic fluorescence of the protein. Single turnover kinetics for the aminoacylation of tRNA(Tyr) by D-tyrosine were monitored using stopped-flow fluorescence spectroscopy. Bacillus stearothermophilus tyrosyl-tRNA synthetase binds d-tyrosine with an 8.5-fold lower affinity than that of l-tyrosine (K (D-Tyr)(d) = 102 microm) and exhibits a 3-fold decrease in the forward rate constant for the activation reaction (k (D-Tyr)(3) = 13 s(-1)). Furthermore, as is the case for l-tyrosine, tyrosyl-tRNA synthetase exhibits "half-of-the-sites" reactivity with respect to the binding and activation of D-tyrosine. Surprisingly, pyrophosphate binds to the TyrRS.d-Tyr-AMP intermediate with a 14-fold higher affinity than it binds to the TyrRS.l-Tyr-AMP intermediate (K (PPi)(d) = 0.043 for TyrRS.d-Tyr-AMP.PP(i)). tRNA(Tyr) binds with a slightly (2.3-fold) lower affinity to the TyrRS.d-Tyr-AMP intermediate than it does to the TyrRS.l-Tyr-AMP intermediate. The observation that the K (Tyr)(d) and k(3) values are similar for l- and d-tyrosine suggests that their side chains bind to tyrosyl-tRNA synthetase in similar orientations and that at least one of the carboxylate oxygen atoms in d-tyrosine is properly positioned for attack on the alpha-phosphate of ATP.  相似文献   

8.
Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with L-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase (TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.  相似文献   

9.
The mitochondrial genome of trypanosomes, unlike that of most other eukaryotes, does not appear to encode any tRNAs. Therefore, mitochondrial tRNAs must be either imported into the organelle or created through a novel mitochondrial process, such as RNA editing. Trypanosomal tRNA(Tyr), whose gene contains an 11-nucleotide intron, is present in both the cytosol and the mitochondrion and is encoded by a single-copy nuclear gene. By site-directed mutagenesis, point mutations were introduced into this tRNA gene, and the mutated gene was reintroduced into the trypanosomal nuclear genome by DNA transfection. Expression of the mutant tRNA led to the accumulation of unspliced tRNA(Tyr) (A. Schneider, K. P. McNally, and N. Agabian, J. Biol. Chem. 268:21868-21874, 1993). Cell fractionation revealed that a significant portion of the unspliced mutant tRNA(Tyr) was recovered in the mitochondrial fraction and was resistant to micrococcal nuclease treatment in the intact organelle. Expression of the nuclear integrated, mutated tRNA gene and recovery of its gene product in the mitochondrial fraction directly demonstrated import. In vitro experiments showed that the unspliced mutant tRNA(Tyr), in contrast to the spliced wild-type form, was no longer a substrate for the cognate aminoacyl synthetase. The presence of uncharged tRNA in the mitochondria demonstrated that aminoacylation was not coupled to import.  相似文献   

10.
11.
The archaeal/eukaryotic tyrosyl-tRNA synthetase (TyrRS)-tRNA(Tyr) pairs do not cross-react with their bacterial counterparts. This 'orthogonal' condition is essential for using the archaeal pair to expand the bacterial genetic code. In this study, the structure of the Methanococcus jannaschii TyrRS-tRNA(Tyr)-L-tyrosine complex, solved at a resolution of 1.95 A, reveals that this archaeal TyrRS strictly recognizes the C1-G72 base pair, whereas the bacterial TyrRS recognizes the G1-C72 in a different manner using different residues. These diverse tRNA recognition modes form the basis for the orthogonality. The common tRNA(Tyr) identity determinants (the discriminator, A73 and the anticodon residues) are also recognized in manners different from those of the bacterial TyrRS. Based on this finding, we created a mutant TyrRS that aminoacylates the amber suppressor tRNA with C34 65 times more efficiently than does the wild-type enzyme.  相似文献   

12.
Protein transport into the nucleus is generally considered to involve specific nuclear localization signals (NLS) though it is becoming increasingly evident that efficient and well controlled import of proteins which lack a canonical NLS also occurs in cells. Vpx, a 112 amino acid protein from human immunodeficiency virus type 2 (HIV-2) and the closely related simian immunodeficiency virus (SIV) is one such protein, which does not have an identifiable canonical NLS and is yet efficiently imported to the nuclear compartment. Here we report that Vpx protein is imported to the nucleus independently of virus-encoded cofactors. When fusions of truncated versions of Vpx with full-length beta-galactosidase (beta-Gal) were tested, the region from Vpx 61 to 80 was found to be sufficient to mediate the import of the heterologous cytoplasmic protein to the nucleus. Inactivation of Vpx NLS precluded nuclear import of Vpx and reduced virus replication in non-dividing macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral nuclear import were present. Importantly, we identified and characterized a novel type of 20 amino acid transferable nuclear import signal in Vpx that is distinct from other import signals described. In addition, we show that the minimal nuclear targeting domain identified here overlaps with helical domain III (amino acid (aa) 64-82) and the structural integrity of this helical motif is critical for the nuclear import of Vpx. Taken together, these data suggest that Vpx is imported to the nucleus via a novel import pathway that is dependent on its 20 amino acid unique nuclear targeting signal, and that the nuclear import property of Vpx is critical for the optimal virus replication in non-dividing cells such as macrophages.  相似文献   

13.
14.
Froelich CA  First EA 《Biochemistry》2011,50(33):7132-7145
Charcot-Marie-Tooth disorder (CMT) is the most common inherited peripheral neuropathy, afflicting 1 in every 2500 Americans. One form of this disease, Dominant Intermediate Charcot-Marie-Tooth disorder type C (DI-CMTC), is due to mutation of the gene encoding the cytoplasmic tyrosyl-tRNA synthetase (TyrRS). Three different TyrRS variants have been found to give rise to DI-CMTC: replacing glycine at position 41 by arginine (G41R), replacing glutamic acid at position 196 by lysine (E196K), and deleting amino acids 153-156 (Δ(153-156)). To test the hypothesis that DI-CMTC is due to a defect in the ability of tyrosyl-tRNA synthetase to catalyze the aminoacylation of tRNA(Tyr), we have expressed each of these variants as recombinant proteins and used single turnover kinetics to characterize their abilities to catalyze the activation of tyrosine and its subsequent transfer to the 3' end of tRNA(Tyr). Two of the variants, G41R and Δ(153-156), display a substantial decrease in their ability to bind tyrosine (>100-fold). In contrast, the E196K substitution does not significantly affect the kinetics for formation of the tyrosyl-adenylate intermediate and actually increases the rate at which the tyrosyl moiety is transferred to tRNA(Tyr). The observation that the E196K substitution does not decrease the rate of catalysis indicates that DI-CMTC is not due to a catalytic defect in tyrosyl-tRNA synthetase.  相似文献   

15.
16.
Human inositol phosphate multikinase (IPMK) is a multifunctional protein in cellular signal transduction, namely, a multispecific inositol phosphate kinase, phosphatidylinositol 3-kinase, and a scaffold within the mTOR-raptor complex. To fulfill these nuclear and cytoplasmic functions, intracellular targeting of IPMK needs to be regulated. We show here that IPMK, which has been considered to be a preferentially nuclear protein, is a nucleocytoplasmic shuttling protein, whose nuclear export is mediated by classical nuclear export receptor CRM1. We identified a functional nuclear export signal (NES) additionally to its previously described nuclear import signal (NLS). Furthermore, we describe a mechanism by which the activity of the IPMK-NLS is controlled. Protein kinase CK2 binds endogenous IPMK and phosphorylates it at serine 284. Interestingly, this phosphorylation can decrease nuclear localization of IPMK cell type specifically. A controlled nuclear import of IPMK may direct its actions either toward nuclear inositol phosphate (InsPx) metabolism or cytoplasmic actions on InsPx, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P?], as well as mTOR-raptor.  相似文献   

17.
18.
Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4. We have also determined the structure at 2.9 A resolution of the complex of T.thermophilus TyrRS with cognate tRNA(tyr)(G Psi A). In this structure, the C-terminal domain binds between the characteristic long variable arm of the tRNA and the anti-codon stem, thus recognizing the unique shape of the tRNA. The anticodon bases have a novel conformation with A-36 stacked on G-34, and both G-34 and Psi-35 are base-specifically recognized. The tRNA binds across the two subunits of the dimeric enzyme and, remarkably, the mode of recognition of the class I TyrRS for its cognate tRNA resembles that of a class II synthetase in being from the major groove side of the acceptor stem.  相似文献   

19.
20.
Galani K  Hurt E  Simos G 《FEBS letters》2005,579(5):969-975
Arc1p, a yeast tRNA-binding protein, forms a complex with the aminoacyl-tRNA synthetases, methionyl tRNA synthetase (MetRS) and glutamyl tRNA synthetase (GluRS). Although this complex localizes normally in the cytoplasm, in the absence of Arc1p the two free synthetases are also found inside the nucleus. In this work, in order to localize free Arc1 we abolished complex assembly by deleting the appended domains from both MetRS and GluRS. Surprisingly, free Arc1p remained cytoplasmic even when fitted with a strong nuclear localization signal (NLS). However, NLS-Arc1p accumulated in the nucleus when Xpo1/Crm1, the export receptor for NES-containing cargo proteins, was mutated. Thus, the cytoplasmic location of Arc1p is maintained by Xpo1p-dependent nuclear export and Arc1p could act as an adapter in the nucleocytoplasmic trafficking of tRNA and/or the tRNA-aminoacylation machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号