首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascites cells elicited the formation of long microvillus-like protrusions, rapid translocation of endogenous ERM proteins and green fluorescent protein-tagged ezrin to the cortical region including these protrusions, and Thr(567/564/558) (ezrin/radixin/moesin) phosphorylation of cortical ERM proteins. Reduced cell volume appeared to be the critical parameter in hypertonicity-induced ERM protein activation, whereas alterations in extracellular ionic strength or intracellular pH were not involved. A shrinkage-induced increase in the level of membrane-associated phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] appeared to play an important role in ERM protein activation, which was prevented after PtdIns(4,5)P(2) depletion by expression of the synaptojanin-2 phosphatase domain. While expression of constitutively active RhoA increased basal ERM phosphorylation, the Rho-Rho kinase pathway did not appear to be involved in shrinkage-induced ERM protein phosphorylation, which was also unaffected by the inhibition or absence of Na(+)/H(+) exchanger isoform (NHE1). Ezrin knockdown by small interfering RNA increased shrinkage-induced NHE1 activity, reduced basal and shrinkage-induced Rho activity, and attenuated the shrinkage-induced formation of microvillus-like protrusions. Hyperosmolarity-induced cell death was unaltered by ezrin knockdown or after phosphatidylinositol 3-kinase (PI3K) inhibition. In conclusion, ERM proteins are activated by osmotic shrinkage in a PtdIns(4,5)P(2)-dependent, NHE1-independent manner. This in turn mitigates the shrinkage-induced activation of NHE1, augments Rho activity, and may also contribute to F-actin rearrangement. In contrast, no evidence was found for the involvement of an NHE1-ezrin-PI3K-PKB pathway in counteracting shrinkage-induced cell death.  相似文献   

2.
Cytoskeletal proteins of the ezrin-radixin-moesin (ERM) family contribute to T cell activation in response to Ag, and also to T cell polarization in response to connective tissue matrix proteins and chemokine gradients. Previous work has shown that T cells from aged mice are defective in their ability to develop molecular linkages between surface macromolecules and the underlying cytoskeletal framework, both for proteins that move to the synapse and those that are excluded from the site of T cell-APC interaction. T cells from aged mice also show defective cytoskeletal rearrangements and lamellipodia formation when placed in contact with slides coated with Abs to the TCR/CD3 complex. In this study, we show that old CD4 T cells differ from young CD4 T cells in several aspects of ERM biochemistry, including ERM phosphorylation and ERM associations with CD44, CD43, and EBP50. In addition, CD4 T cells from aged mice show defects in the Rho GTPase activities known to control ERM function.  相似文献   

3.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.  相似文献   

4.
Mammalian Ste20-like protein kinase 3 (Mst3) is a key player in inducing apoptosis in a variety of cell types and has recently been shown to participate in the signaling pathway of hypoxia-induced apoptosis of human trophoblast cell line 3A-sub-E (3A). It is believed that oxidative stress may occur during hypoxia and induce the expression of Mst3 in 3A cells via the activation of c-Jun N-terminal protein kinase 1 (JNK1). This hypothesis was demonstrated by the suppressive effect of dl-α-lipoic acid, a reactive oxygen species scavenger, in hypoxia-induced responses of 3A cells such as Mst3 expression, nitrotyrosine formation, JNK1 activation and apoptosis. Similar results were also observed in trophoblasts of human placental explants in both immunohistochemical studies and immunoblot analyses. These suggested that the activation of Mst3 might trigger the apoptotic process in trophoblasts by activating caspase 3 and possibly other apoptotic pathways. The role of nitric oxide synthase (NOS) and NADPH oxidase (NOX) in hypoxia-induced Mst3 up-regulation was also demonstrated by the inhibitory effect of N(G)-nitro-l-arginine and apocynin, which inhibits NOS and NOX, respectively. Oxidative stress was postulated to be induced by NOS and NOX in 3A cells during hypoxia. In conclusion, hypoxia induces oxidative stress in human trophoblasts by activating NOS and NOX. Subsequently, Mst3 is up-regulated and plays an important role in hypoxia-induced apoptosis of human trophoblasts.  相似文献   

5.
人程序性细胞死亡分子10(Homo sapiens programmed cell death 10, PDCD10),最初被称为TFAR15(TF-1 cell apoptosis related gene 15),是由撤除粒细胞 巨噬细胞集落刺激因子诱导凋亡的人红白血病细胞系TF-1中克隆得到的1个凋亡相关基因. 后来发现它的突变可引起散发性或家族性颅内海绵状血管瘤(cerebral cavernous malformations,CCMs)的发生,为CCMs的第3个致病基因,所以又被叫做CCM3.近年来研究发现,PDCD10能够和GCKⅢ蛋白、γ-PCDH、CCM2、VEGFR2、ERM等众多蛋白相互作用,并能调控ERK/MAPK通路,增加MST4/VEGFR2的稳定性,增强相应的信号转导,促进细胞的增殖、分化和中枢神经系统的发育,与癌症的发生相关,还能调节细胞的凋亡.以上研究证明了PDCD10 的多种生物学效应,并提示其在血管生成、氧化应激、肿瘤中发挥重要作用.  相似文献   

6.
Diabetes is a leading cause of microvascular complications, such as nephropathy and retinopathy. Recent studies have proposed that hyperglycemia-induced endothelial cell dysfunction is modulated by mitochondrial stress. Therefore, our experiment was to detect the upstream mediator of mitochondrial stress in hyperglycemia-treated endothelial cells with a focus on macrophage-stimulating 1 (Mst1) and mitochondrial fission. Our data illuminated that hyperglycemia incubation reduced cell viability, as well as increased apoptosis ratio in endothelial cell, and this alteration seemed to be associated with Mst1 upregulation. Inhibition of Mst1 via transfection of Mst1 siRNA into an endothelial cell could sustain cell viability and maintain mitochondrial function. At the molecular levels, endothelial cell death was accompanied with the activation of mitochondrial oxidative stress, mitochondrial apoptosis, and mitochondrial fission. Genetic ablation of Mst1 could reduce mitochondrial oxidative injury, block mitochondrial apoptosis, and repress mitochondrial fission. Besides, we also found Mst1 triggered mitochondrial dysfunction as well as endothelial cell damage through augmenting JNK pathway. Suppression of JNK largely ameliorated the protective actions of Mst1 silencing on hyperglycemia-treated endothelial cells and sustain mitochondrial function. The present study identifies Mst1 as a primary key mediator for hyperglycemia-induced mitochondrial damage and endothelial cell dysfunction. Increased Mst1 impairs mitochondrial function and activates endothelial cell death via opening mitochondrial death pathway through JNK.  相似文献   

7.
Apoptosis is a highly coordinated or programmed cell suicide mechanism in eukaryotes. Histone modification is associated with nuclear events in apoptotic cells. Specifically H2B phosphorylation at serine 14 (Ser14) catalyzed by Mst1 kinase has been linked to chromatin condensation during apoptosis. We report that activation of MAPKs (ERK1/2, JNK1/2 and p38) together with Mst1 and caspase-3 is required for phosphorylation of H2B (Ser14) during ultraviolet B light (UVB)-induced apoptosis. UVB can trigger activation of MAPKs and induce H2B phosphorylation at Ser14 but not acetylation in a time-dependent manner. Inhibition of ERK1/2, JNK1/2 or p38 activity blocked H2B phosphorylation (Ser14). Furthermore, caspase-3 was activated by UVB to regulate Mst1 activity, which phosphorylates H2B at Ser14, leading to chromatin condensation. Full inhibition of caspase-3 activity reduced Mst1 activation and partially inhibited H2B phosphorylation (Ser14), but ERK1/2, JNK1/2 and p38 activities were not affected. Taken together, these data revealed that H2B phosphorylation is regulated by both MAPKs and caspase-3/Mst1 pathways during UVB-induced apoptosis.  相似文献   

8.
9.
10.
Members of the nuclear factor-κB (NF-κB)/Rel family (p50, p52, p65 (RelA), RelB and c-Rel) is sequestered in the cytoplasm through its tight association with the inhibitor of NF-κB (IκB). NF-κB has been shown to function as key regulators of either cell death or survival in neurons after activation of the cells by various extracellular signals. In the study presented here, we investigated whether the selective activation of diverse NF-κB/Rel family members in HT22 cells might lead to distinct effects on glutamate-induced cell death. Exposing HT22 cells to glutamate, which blocks cystine uptake into the cells via inhibition of the glutamate-cystine antiporter, resulted in a transient activation of IκB and NF-κB/Rel and caused delayed cell death. Aspirin, which has been shown to block phosphorylation of the IκB component of the cytoplasmic NF-κB complex, significantly suppressed glutamate-induced cell death, whereas the NF-κB decoy oligonucleotide potentiated it. The inhibition of NF-κB/Rel protein expression by antisense oligonucleotides showed that p65 is involved in glutamate-mediated cell death, whereas p50 is involved in inhibitory pathways of the cell death. These findings suggest that in HT22 cells, the balance between promoting and presenting cell death to glutamate-induced oxidative stress relies on the activation of distinct NF-κB proteins.  相似文献   

11.
12.
Endothelial cells (ECs) respond to TNF-alpha by altering their F-actin cytoskeleton and junctional permeability through mechanisms that include protein kinase C (PKC) and p38 MAPK. Ezrin, radixin, and moesin (ERM) regulate many cell processes that often require a conformational change of these proteins as a result of phosphorylation on a conserved threonine residue near the C terminus. This study tested the hypothesis that ERM proteins are phosphorylated on this critical threonine residue through TNF-alpha-induced activation of PKC and p38 and modulate permeability increases in pulmonary microvascular ECs. TNF-alpha induced ERM phosphorylation on the threonine residue that required activation of p38, PKC isoforms, and phosphatidylinositol-4-phosphate 5-kinase Ialpha, a major enzyme generating phosphatidylinositol 4,5-bisphosphate, and phosphorylated ERM were prominently localized at the EC periphery. TNF-alpha-induced ERM phosphorylation was accompanied by cytoskeletal changes, paracellular gap formation, and increased permeability to fluxes of dextran and albumin. These changes required activation of p38 and PKC and were completely prevented by inhibition of ERM protein expression using small interfering RNA. Thus, ERM proteins are phosphorylated through p38 and PKC-dependent mechanisms and modulate TNF-alpha-induced increases in endothelial permeability. Phosphorylation of ERM likely plays important roles in EC responses to TNF-alpha by modulating the F-actin cytoskeleton, adhesion molecules, and signaling events.  相似文献   

13.
The fully executed epidermal growth factor receptor (EGFR)/Ras/MEK/ERK pathway serves a pro-survival role in renal epithelia under moderate oxidative stress. We and others have demonstrated that during severe oxidative stress, however, the activated EGFR is disconnected from ERK activation in cultured renal proximal tubule cells and also in renal proximal tubules after ischemia/reperfusion injury, resulting in necrotic death. Studies have shown that the tyrosine-phosphorylated p46/52 isoforms of the ShcA family of adaptor proteins connect the activated EGFR to activation of Ras and ERK, whereas the p66(shc) isoform can inhibit this p46/52(shc) function. Here, we determined that severe oxidative stress (after a brief period of activation) terminates activation of the Ras/MEK/ERK pathway, which coincides with ERK/JNK-dependent Ser(36) phosphorylation of p66(shc). Isoform-specific knockdown of p66(shc) or mutation of Ser(36) to Ala, but not to Asp, attenuated severe oxidative stress-mediated ERK inhibition and cell death in vitro. Also, severe oxidative stress (unlike ligand stimulation and moderate oxidative stress, both of which support survival) increased binding of p66(shc) to the activated EGFR and Grb2. This binding dissociated the SOS1 adaptor protein from the EGFR-recruited signaling complex, leading to termination of Ras/MEK/ERK activation. Notably, Ser(36) phosphorylation of p66(shc) and its increased binding to the EGFR also occurred in the kidney after ischemia/reperfusion injury in vivo. At the same time, SOS1 binding to the EGFR declined, similar to the in vitro findings. Thus, the mechanism we propose in vitro offers a means to ameliorate oxidative stress-induced cell injury by either inhibiting Ser(36) phosphorylation of p66(shc) or knocking down p66(shc) expression in vivo.  相似文献   

14.
Caveolae and their coat proteins, caveolins, co-ordinate multiple signaling pathways. Caveolin-3 is a muscle-specific caveolin isoform that is deficient in limb girdle muscular dystrophy type 1 C (LGMD1C). Paradoxically, overexpression of this protein also causes muscle degeneration in vivo. We hypothesize that altered membrane expression of caveolin-3 in muscle cells causes a degenerative phenotype by disrupting the co-ordination of signaling pathways that are critical to the maintenance of cell survival. Here, we show for the first time that, in normal muscle cells subjected to oxidative stress, the phosphatidylinositol (3) kinase (PI(3) kinase)-associated proteins PDK1 and Akt associate with caveolae where they bind to caveolin-3, and that normal activation of this pathway promotes cell survival. Either increased or decreased expression of caveolin-3 at the membrane caused an increased susceptibility to oxidative stress, and myotube survival was markedly improved by PI(3) kinase inhibition. This occurred concomitantly with altered phosphorylation of the pro-apoptotic proteins GSK3beta and Bad, despite normal levels of Akt activation. Taken together, our results demonstrate that altered caveolin-3 expression can change the outcome of PI(3) kinase activation from cell survival to cell death. These findings indicate that normal expression and localization of caveolin-3 are required to appropriately co-ordinate PI(3) kinase/Akt-mediated cell survival signaling, and suggest that this pathway may be an effective therapeutic target for the treatment of muscular dystrophies associated with caveolin-3 mutations.  相似文献   

15.
Stem cell factor (SCF) activates a variety of signals associated with stimulation of proliferation, differentiation, migration, and survival in melanocytes. However, the molecular mechanisms by which SCF and its receptor Kit activates these signaling pathways simultaneously and independently are still poorly defined. Here, we examined whether SCF induces ezrin/radixin/moesin (ERM) proteins phosphorylation as a downstream target of PI3K in melanocytes. ERM proteins are cross-linkers between the plasma membrane and the actin cytoskeleton and are activated by phosphorylation of a C-terminal threonine residue. Our results demonstrated that SCF-induced ERM proteins phosphorylation on threonine residue and Rac1 activation in cultured normal human melanocytes through the activation of PI3K. The functional role of phosphorylated-ERM proteins was examined using melanocytes infected with adenovirus carrying a dominant negative mutant (Ala-558, TA) or wild type of moesin. In the TA moesin-overexpressing melanocytes, SCF-induced cell proliferation and migration were inhibited. Thus, our results indicate that phosphorylation of ERM proteins plays an important role in the regulation of SCF-induced melanocyte proliferation and migration.  相似文献   

16.
Mammalian sterile 20-like kinase 1 (Mst1) is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.  相似文献   

17.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

18.
Previously, we showed that mitogen-activated protein kinase/extracellular signal-related kinase 4 (MEKK4) is responsible for p38 activation and that its activation during tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment also increases the catalytic activity of Akt. Here, we further investigated how the TRAIL-induced MEKK4/p38/heat shock protein (HSP27)/Akt survival network is modulated by the Src/c-Cbl interacting protein of 85 kDa (CIN85)/c-Cbl complex. TRAIL-induced activation of Akt catalytic activity and phosphorylation were highly correlated with p38/HSP27 phosphorylation, whereas the phosphorylation of p38/HSP27 increased further during incubation with curcumin and TRAIL, which caused significant apoptotic cell death. CIN85, a c-Cbl-binding protein, plays an essential role in connecting cell survival to cell death. The interaction of CIN85 with MEKK4 was increased during the late phase of TRAIL incubation, suggesting that sustained p38 and HSP27 phosphorylation protects cells by preventing further cell death. However, further increases in p38/HSP27 phosphorylation induced by cotreatment with curcumin and TRAIL converted cell fate to death. Taken together, these data demonstrate that phosphorylated p38/HSP27 as biphasic modulators act in conjunction with CIN85 to determine whether cells survive or die in response to apoptotic stress.  相似文献   

19.
Hypoxia/reoxygenation stress induces the activation of specific signaling proteins and activator protein 1 (AP-1) to regulate cell cycle regression and apoptosis. In the present study, we report that hypoxia/reoxygenation stress activates AP-1 by increasing c-Jun phosphorylation and DNA binding activity through activation of Polo-like-kinase 3 (Plk3) resulting in apoptosis. The specific effect of hypoxia/reoxygenation stress on Plk3 activation resulting in c-Jun phosphorylation was the opposite of UV irradiation-induced responses that are meanly independent on activation of the stress-induced JNK signaling pathway in human corneal epithelial (HCE) cells. The effect of hypoxia/reoxygenation stress-induced Plk3 activation on increased c-Jun phosphorylation and apoptosis was also mimicked by exposure of cells to CoCl(2). Hypoxia/reoxygenation activated Plk3 in HCE cells to directly phosphorylate c-Jun proteins at phosphorylation sites Ser-63 and Ser-73, and to increase DNA binding activity of c-Jun, detected by EMSA. Further evidence demonstrated that Plk3 and phospho-c-Jun were immunocolocalized in the nuclear compartment of hypoxia/reoxygenation stress-induced cells. Increased Plk3 activity by overexpression of wild-type and dominantly positive Plk3 enhanced the effect of hypoxia/reoxygenation on c-Jun phosphorylation and cell death. In contrast, knocking-down Plk3 mRNA suppressed hypoxia-induced c-Jun phosphorylation. Our results provide a new mechanism indicating that hypoxia/reoxygenation induces Plk3 activation instead of the JNK effect to directly phosphorylate and activate c-Jun, subsequently contributing to apoptosis in HCE cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号