首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new recessive, sex-linked, nonlethal in the homozygote, wing mutation in Drosophila virilis was studied using a hybridological assay, light microscopy, and transmission electron microscopy. The mutants have abnormally small wings; the phenotype is attributed to a cell-autonomous reduction in the size of the epidermal cells of the differentiating wing. The phenotype is also characterized by abnormally oriented wing hairs, wavy wing edge, temperature sensitivity, and some abnormalities in the wing veins.  相似文献   

2.
To elucidate the mechanisms whereby genes and environment influence wing size, we investigated the effects of various rearing temperatures and larval crowding conditions on the wings of the mutant miniature and wild-type fruit flies. In adults we monitored wing size, cell number, wing thickness, cell density; in larval imaginal discs we looked for cell death. Cell density was inversely proportional to wing size. Of particular interest was the finding that smaller wings tend to be thicker. Electron microscope studies showed that the miniature wing layers are grossly abnormal. We hypothesize that these abnormalities are due to abnormal cell flattening of the wing epithelial cells, and we conclude that gene and environmental effects on cell flattening may be an important component in determining cell density and hence organ size.  相似文献   

3.
To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo‐distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance‐generating developmental processes occur and/or the magnitude of variation that they produce favor proximo‐distal, rather than anterior‐posterior, modularity in the Drosophila wing.  相似文献   

4.
Almost every cell in the Drosophila pupal wing forms a single, distally pointing cuticular hair. The function of the frizzled (fz) gene is essential for the elaboration of the normal wing hair pattern. In the absence of fz function hairs develop, but they display an abnormal polarity. We have examined the developmental expression of the fi gene at the RNA level via in situ hybridization and at the protein level via Western blotting. We have found that fz is expressed in all regions of the epidermis before, during, and after the fz cold sensitive period. We have also found that fz function is not required for normal fi expression. We have further found that mutations in several other tissue polarity genes do not noticeably alter the expression or the modification state of the Fz protein. © 1994 Wiley-Liss, Inc.  相似文献   

5.
We examined influences on wing and body size in 11 species (12 strains) of Drosophila. Six measures of wing length and width were closely correlated with wing area and suggested little variation in wing shape among the species. Among ten species wing loading, an important factor in flight costs and manoeuvrability, increased as body mass increased at a rate consistent with expectations from allometric scaling of wing area and body mass to body length. Intraspecific variation in wing loading showed similar relationships to body mass. Density and temperature during larval development influenced wing loading through general allometric relations of body size and wing area. Temperature during the pupal stage, but not during wing hardening after eclosion, influenced wing area independently of body size. Wing area increased as growth temperature decreased. Individuals reared at cooler temperatures thus compensated for a potential allometric increase in wing loading by differentially enlarging the wing area during pupal development.  相似文献   

6.
Paul N. Adler 《Fly》2017,11(3):194-199
The exoskeleton of insects and other arthropods is a very versatile material that is characterized by a complex multilayer structure. In Sobala and Adler (2016) we analyzed the process of wing cuticle deposition by RNAseq and electron microscopy. In this extra view we discuss the unique aspects of the envelope the first and most outermost layer and the gene expression program seen at the end of cuticle deposition. We discussed the role of undulae in the deposition of cuticle and how the hydrophobicity of wing cuticle arises.  相似文献   

7.
8.
卷翅是果蝇遗传学上最常用的标记之一,但卷翅形成的具体机制还不清楚.过去的研究发现,理化刺激影响果蝇卷翅的形成.我们最近研究发现,H_2O_2处理不仅会影响果蝇的羽化率,还会使其出现卷翅现象.本研究通过改变H_2O_2浓度、果蝇培养温度和H_2O_2处理时间,探讨影响黑腹果蝇卷翅形成的具体因素,并对其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活力进行检测,探讨H_2O_2对果蝇抗氧化能力的影响.结果表明:果蝇的羽化率与H_2O_2浓度成反比.温度、H_2O_2浓度和H_2O_2处理时间的改变均会影响果蝇翅的卷曲程度和卷翅果蝇所占的比例.其中white基因突变果蝇对这3种条件反应最明显,mini-white(white基因回复突变)果蝇却可以拯救该表型,它的反应与野生型OR相似.H_2O_2对含Cy基因的果蝇卷翅的形成也有一定的影响,可以加大果蝇翅的卷曲程度.对SOD、CAT和GSH-PX活力检测发现,H_2O_2处理会使果蝇的抗氧化能力降低.实时荧光定量PCR检测发现,H_2O_2处理会导致果蝇基因表达量发生改变.黑腹果蝇卷翅形成是一个十分复杂的过程,H_2O_2可能作为某种信号分子或是间接影响某种因子参与黑腹果蝇的卷翅形成过程.该卷翅形成过程可能与Cy基因导致的果蝇卷翅过程是同一个信号途径,两者也可能是通过不同的模式进行调控的.  相似文献   

9.
卷翅是果蝇遗传学上最常用的标记之一,但卷翅形成的具体机制还不清楚.过去的研究发现,理化刺激影响果蝇卷翅的形成.我们最近研究发现,H2O2处理不仅会影响果蝇的羽化率,还会使其出现卷翅现象.本研究通过改变H2O2浓度、果蝇培养温度和H2O2处理时间,探讨影响黑腹果蝇卷翅形成的具体因素,并对其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活力进行检测,探讨H2O2对果蝇抗氧化能力的影响.结果表明: 果蝇的羽化率与H2O2浓度成反比.温度、H2O2浓度和H2O2处理时间的改变均会影响果蝇翅的卷曲程度和卷翅果蝇所占的比例.其中white基因突变果蝇对这3种条件反应最明显,mini-white(white基因回复突变)果蝇却可以拯救该表型,它的反应与野生型OR相似.H2O2对含Cy基因的果蝇卷翅的形成也有一定的影响,可以加大果蝇翅的卷曲程度.对SOD、CAT和GSH-PX活力检测发现,H2O2处理会使果蝇的抗氧化能力降低.实时荧光定量PCR检测发现,H2O2处理会导致果蝇基因表达量发生改变.黑腹果蝇卷翅形成是一个十分复杂的过程,H2O2可能作为某种信号分子或是间接影响某种因子参与黑腹果蝇的卷翅形成过程.该卷翅形成过程可能与Cy基因导致的果蝇卷翅过程是同一个信号途径,两者也可能是通过不同的模式进行调控的.  相似文献   

10.
Contemporary approaches that use fluctuating asymmetry (FA) as a possible target for natural and sexual selection are based on the premise that FA is a quantifiable expression of developmental instability (DI) that is inherited. Previous work with Drosophila buzzatii found that male mating success was correlated positively to body size (wing length) and negatively to FA, but these relationships seem to be environmentally induced. Heritability of FA was low and not significantly different from zero, but statistical power was also estimated to be very low and, hence, no conclusive evidence could be obtained. A large half‐sib mating design is used here to examine the relationships of different aspects of development for wing size. Consistently with previous findings, I found high heritabilities for wing length (WL) and wing width (WW), and positive correlations between both traits. Heritabilities of FA (FAWL, FAWW) were low (0.037) but significantly different from zero, and the genetic correlation between FAWL and FAWW was estimated as ?1 because the absolute value for the genetic covariance was similar in magnitude or even larger than the estimated genetic variances of both traits. This suggests that these two traits should be considered to be the same character. The between‐trait phenotypic correlation in FA, which reduces to the repeatability in this situation, was positive and statistically significant thus rendering an estimate of heritability for DI in D. buzzatii of . Nevertheless, the fact that left/right wing sizes were found to be determined by the same set of genes is difficult to reconcile with the presence of special genetic mechanisms that stabilize left/right development in this species. A qualitatively different pattern for asymmetry was observed when the nonlinear composite character wing area (WA ≈ WL × WW) was used, and . Although the results could be made compatible with the existence of a diallelic locus with antagonistic pleiotropic effects on FAWL and FAWW that combine multiplicatively to produce overdominance for FAWA, the available evidence is extremely weak at best. Finally, a test to the null hypothesis of a nongenetic basis of FA, particularly relevant to those situations when directional asymmetry may be heritable, is suggested.  相似文献   

11.
The Drosophila buzzatii species cluster consists of the sibling species D. buzzatii, D. koepferae, D. serido, D. borborema, D. seriema, D. antonietae and D. gouveai, all of which breed exclusively in decaying cactus tissue and, except for D. buzzatii (a colonizing subcosmopolitan species), are endemic to South America. Using a morphometric approach and multivariate analysis of 17 wing parameters, we investigated the degree of divergence in wing morphology among the sibling species of this cluster. Significant differences were obtained among the species and discriminant analysis showed that wing morphology was sufficiently different to allow the correct classification of 98.6% of the 70 individuals analysed. The phenetic relationships among the species inferred from UPGMA cluster analysis based on squared Mahalanobis distances (D2) were generally compatible with previously published phylogenetic relationships. These results suggest that wing morphology within D. buzzatii cluster is of phylogenetic importance.  相似文献   

12.
Abstract. Developmental integration is the covariation among morphological structures due to connections between the developmental processes that built them. Here we use the methods of geometric morphometrics to study integration in the wing of Drosophila melanogaster . In particular, we focus on the hypothesis that the anterior and posterior wing compartments are separate developmental units that vary independently. We measured both variation among genetically diverse individuals and random differences between body sides of single individuals (fluctuating asymmetry, FA). For both of these sources of variation, the patterns of variation identified by principal component analyses all involved landmarks in both the anterior and posterior compartments simultaneously. Analyses focusing exclusively on the covariation between the anterior and posterior compartments, by the partial least-squares method, revealed pervasive integration of the two compartments, for both individual variation and FA. These analyses clearly indicate that the anterior and posterior compartments are not separate units of variation, but that the covariation between compartments is sufficient to account for nearly all the variation throughout the entire wing. We conclude that variation among individuals as well as the developmental perturbations responsible for FA generate shape variation primarily through developmental processes that are integrated across both compartments. In contrast, much less of the shape variation in our sample can be attributed to the localized processes that establish the identity of particular wing veins.  相似文献   

13.
14.
Absolute constraints are limitations on genetic variation that preclude evolutionary change in some aspect of the phenotype. Absolute constraints may reflect complete absence of variation, lack of genetic variation that extends the range of phenotypes beyond some limit, or lack of additive genetic variation. This last type of absolute constraint is bidirectional, because the mean cannot evolve to be larger or smaller. Most traits do possess genetic variation, so bidirectional absolute constraints are most likely to be detected in a multivariate context, where they would reflect combinations of traits, or dimensions in phenotype space that cannot evolve. A bidirectional absolute constraint will cause the additive genetic covariance matrix (G) to have a rank less than the number of traits studied. In this study, we estimate the rank of the G-matrix for 20 aspects of wing shape in Drosophila melanogaster. Our best estimates of matrix rank are 20 in both sexes. Lower 95% confidence intervals of rank are 17 for females and 18 for males. We therefore find little evidence of bidirectional absolute constraints. We discuss the importance of this result for resolving the relative roles of selection and drift processes versus constraints in the evolution of wing shape in Drosophila.  相似文献   

15.
16.
The imaginal wing disc of flies gives rise to the adult wing blade and dorsal thorax (notum). A great deal has been learned in recent years about the process of neurogenesis in this disc; a number of genes that play crucial roles in the formation of sensory mother cells and in the differentiation of the sensory organs have been identified and their roles defined. Given this extensive background of developmental genetics, it has seemed profitable to summarize what is known about the end-products of neural development, the adult sensory organs. Discussed are their physiological function and role in behavior, the pathways followed by their axons in the CNS, and both genes and epigenetic processes that might play some role in the later stages of neural development and in adult function. The highly individual characteristics of certain of the sensory organs is emphasized, both in the context of their adult roles and as a challenge for future studies in developmental genetics. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
欧俊  郑思春  冯启理  刘琳 《昆虫学报》2013,56(8):917-924
翅原基发育分化与昆虫的个体发育紧密联系, 对昆虫翅发育的研究有助于阐述昆虫的发育过程。另外, 翅的形成是一些农林害虫泛滥的主要原因之一, 研究翅发育分化有助于我们从翅发育的角度控制农林害虫。目前, 翅发育分化在果蝇Drosophila中研究已较为深入详细。果蝇翅发育分化主要包括4个阶段: 翅原基(wing disc)的确定, 前-后(antero-posterior, A-P)和背-腹(dorso-ventral, D-V)组织中心(organizing center)的建立, 翅区(wing region)的确定, 以及翅区的进一步分化。具有homeobox序列的基因(homeobox 基因)如Engrailed (En)、 Apterous (Ap)和Ultrabithorax (Ubx), 分泌蛋白如Wnt家族成员Wingless (Wg)及TGF-β超家族成员Decapentaplegic (Dpp)和Hedgehog (Hh), 以及翅原基特有的核蛋白编码基因Vestigial (Vg), 共同调控了翅原基的正常发育分化。本文综述了果蝇翅原基发育分化的过程及分子机理方面的研究发现, 为翅原基的研究提供了参考。  相似文献   

18.
Lee SF  Rako L  Hoffmann AA 《Heredity》2011,107(1):22-29
Many ecologically important traits exhibit latitudinal variation. Body size clines have been described repeatedly in insects across multiple continents, suggesting that similar selective forces are shaping these geographical gradients. It is unknown whether these parallel clinal patterns are controlled by the same or different genetic mechanism(s). We present here, quantitative trait loci (QTL) analysis of wing size variation in Drosophila simulans. Our results show that much of the wing size variation is controlled by a QTL on Chr 3L with relatively minor contribution from other chromosome arms. Comparative analysis of the genomic positions of the QTL indicates that the major QTL on Chr 3 are distinct in D. simulans and D. melanogaster, whereas the QTL on Chr 2R might overlap between species. Our results suggest that parallel evolution of wing size clines could be driven by non-identical genetic mechanisms but in both cases involve a major QTL as well as smaller effects of other genomic regions.  相似文献   

19.
Wing shape variation was analysed with geometric morphometric methods in 17 laboratory strains, representing 11 closely related species (including two subspecies) of the Drosophila virilis group: D. virilis, D. lummei, D. novamexicana, D. americana americana, D. americana texana, D. montana, D. lacicola, D. flavomontana, D. borealis, D. littoralis, D. ezoana and D. kanekoi. Overall shape estimated using Procrustes coordinates of 14 landmarks was highly variable among strains and very similar in females and males. The landmarks in the distal part of the wing showed higher variation across strains than those in the proximal part. Procrustes distances between species were not consistent with phylogenetic distances previously suggested for the virilis group. Moreover, Procrustes distances between strains within species and within two major phylads (virilis and montana) were comparable with those between species and between phylads, respectively. The most different from other members of the group was the endemic D. kanekoi species, currently viewed as separate subphylad within the montana phylad. Allometric effects were found to be partly responsible for shape differences between the strains. Three most significant shape transformations were considered using the relative warp analysis and the strains were ordinated in accordance with transformation values. The pattern of relative warp scores could be easily interpreted only for the third warp explaining about 13% of shape variation. It separated the largest species, D. montana, D. ezoana and D. kanekoi, from other ones and was mainly associated with shape changes in the proximal region of the wing. The results of the present work suggest that wing shape in the virilis species group is not related to the speciation process. The observed proximal‐distal contrasts and allometric effects are in agreement with data of other studies, in which wing shape variation was analysed within Drosophila species.  相似文献   

20.
The invasive alien fruit pest Drosophila suzukii, (Matsumura 1931) causes economic loss in soft‐skinned fruit production across Europe. After its first detection in 2008, the species has successfully expanded to a wide geographic area and invaded new host plants in a relatively short period of time. The aim of the present study was to analyze the connection between food preferences as host specialization and the morphology of D. suzukii. Population morphological variation in wings was investigated in two different host fruits (grape and strawberry) in which economic damage has been recorded. The geometric morphometric results revealed two noticeable wing shape morphotypes in D. suzukii (i.e. vein configuration) between the grape and strawberry fruits. Flies reared in grapes had wider wings, whereas flies grown in strawberries had more narrow wings. These differences in morphotype could be explained by the effects of wing aerodynamics, which affect the strength of the wings in flight. This, in turn, can lead to better dispersion within the associated fruit host. These results confirm that this extremely invasive species, found worldwide, is successful at spreading in part because of its potential to adapt rapidly under different rearing conditions. Therefore, adaptive variations in the wing shape of D. suzukii can be used to differentiate populations based on food preference (e.g. soft fruits) and can serve as an additional tool for detecting different bioecological types of D. suzukii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号