首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

2.
Recent work has suggested that plants differ in their relative reliance on structural avoidance of embolism versus maintenance of the xylem water column through dynamic traits such as capacitance, but we still know little about how and why species differ along this continuum. It is even less clear how or if different parts of a plant vary along this spectrum. Here we examined how traits such as hydraulic conductivity or conductance, xylem vulnerability curves, and capacitance differ in trunks, large‐ and small‐diameter branches, and foliated shoots of four species of co‐occurring conifers. We found striking similarities among species in most traits, but large differences among plant parts. Vulnerability to embolism was high in shoots, low in small‐ and large‐diameter branches, and high again in the trunks. Safety margins, defined as the pressure causing 50% loss of hydraulic conductivity or conductance minus the midday water potential, were large in small‐diameter branches, small in trunks and negative in shoots. Sapwood capacitance increased with stem diameter, and was correlated with stem vulnerability, wood density and latewood proportion. Capacitive release of water is a dynamic aspect of plant hydraulics that is integral to maintenance of long‐distance water transport.  相似文献   

3.
Urban trees are sensitive to extreme weather events under climate change. Freeze-thaw induced hydraulic failure could induce urban tree dieback and nullify the services they provide. Plant height is a simple but significant trait for plant ecological strategies. Understanding how urban trees with different heights adapt to freeze-thaw stress is increasingly important under climate change. We investigated the relationship between tree height and stem hydraulic functional traits of six common urban tree species in North China to explore tree height-related hydraulic strategies to cope with freeze-thaw stress. Results showed that tall trees had wider vessels, higher hydraulic conductivity, more winter embolism, but lower vessel and wood densities. Positive relationships were found between tree height and vessel diameter, hydraulic conductivity, and freeze-thaw induced embolism, and negative relationships were found between tree height and vessel and wood densities, which implied that short trees employ more conservative ecological strategies than tall trees. Tall and short tree species were well separated by multiple stem hydraulic functional traits; this is consistent with the fact that tall and short trees occupy different niches and indicates that different hydraulic strategies for freeze-thaw stress exist between them. Tall trees might face more pressure to survive under extreme cold weather caused by climate change in the future. Therefore, more attention should be paid to tall urban tree management in North China to cope with extreme cold weather.  相似文献   

4.
Plant hydraulic architecture (PHA) has been linked to water transport sufficiency, photosynthetic rates, growth form and attendant carbon allocation. Despite its influence on traits central to conferring an overall competitive advantage in a given environment, few studies have examined whether key aspects of PHA are indicative of successional stage, especially within mature individuals. While it is well established that wood density (WD) tends to be lower in early versus late successional tree species, and that WD can influence other aspects of PHA, the interaction of WD, successional stage and the consequent implications for PHA have not been sufficiently explored. Here, we studied differences in PHA at the scales of wood anatomy to whole-tree hydraulic conductance in species in early versus late successional Panamanian tropical forests. Although the trunk WD was indistinguishable between the successional groups, the branch WD was lower in the early successional species. Across all species, WD correlated negatively with vessel diameter and positively with vessel packing density. The ratio of branch:trunk vessel diameter, branch sap flux and whole-tree leaf-specific conductance scaled negatively with branch WD across species. Pioneer species showed greater sap flux in branches than in trunks and a greater leaf-specific hydraulic conductance, suggesting that pioneer species can move greater quantities of water at a given tension gradient. In combination with the greater water storage capacitance associated with lower WD, these results suggest these pioneer species can save on the carbon expenditure needed to build safer xylem and instead allow more carbon to be allocated to rapid growth.  相似文献   

5.
Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K leaf) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K leaf values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K leaf or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.  相似文献   

6.
Assessing the hydrological imbalance and associated land degradation issues facing much of southern Australia and other parts of the world requires a better understanding of the defining features of ecosystem water use and the design of sustainable agroecosystems. Thus, by grouping species with similar water-use strategies into 'hydraulic functional types' (HFTs), we investigated the characteristics of water use in species-rich plant communities of south-western Australia. HFTs were determined using multiple-trait associations between morphological and physiological traits relating to water transport, water-use efficiency and response to water deficit. Sixteen traits were assessed from a subset of 21 species from three plant communities located along a topographically determined soil- and water-availability gradient. Multivariate analyses showed that trait variation was least at sites with shallower soils and putatively lower water availability, suggesting a convergence of water-use strategies at sites where plants are exposed to large seasonal water deficits. Stem hydraulic parameters, including stem-specific hydraulic conductivity, conduit diameter and maximum percentage embolism, were positively correlated, indicating the generality that larger conduit diameter permits greater hydraulic efficiency and is associated with greater seasonal reductions in hydraulic conductivity in this ecosystem. Wood density was not correlated with these traits, but closely associated with species' ability to withstand more negative water potentials during summer. Long-term integrated water-use efficiency was lower in shallow-rooted species that exhibited more negative summer water potentials. Specific leaf area and minimum leaf water potential were correlated with a number of separate traits, and appear to represent key axes of trait variation that describe the water-use strategies of different HFTs along the topographic gradient. Five HFTs were classified using a resemblance analysis according to combinations of traits that pertain to different water-use strategies among species; year-round active tree, year-round active shrub, hemiparasite, drought-suppressed broad-leaved shrub and drought-suppressed narrow-leaved shrub.  相似文献   

7.
Riparian ecotones in the fynbos biome of South Africa are heavily invaded by woody invasive alien species, which are known to reduce water supply to downstream environments. To explore whether variation in species-specific functional traits pertaining to drought-tolerance exist, we investigated wood anatomical traits of key native riparian species and the invasive Acacia mearnsii across different water availability proxies. Wood density, vessel resistance against implosion, vessel lumen diameter and vessel wall thickness were measured. Wood density varied significantly between species, with A. mearnsii having denser wood at sites in rivers with high discharge. As higher wood density is indicative of increased drought tolerance and typical of drier sites, this counter-intuitive finding suggests that increased wood density was more closely related to midday water stress, than streamflow quantity per se. Wood density was positively correlated with vessel resistance against implosion. Higher wood density may also be evidence that A. mearnsii is more resistant against drought-induced cavitation than the studied native species. The observed plastic response of A. mearnsii anatomical traits to variable water availability indicates the ability of this species to persist under various environmental conditions. A possible non-causal relationship between wood anatomy and drought tolerance in these riparian systems is discussed.  相似文献   

8.
Water released from wood during transpiration (capacitance) can meaningfully affect daily water use and drought response. To provide context for better understanding of capacitance mechanisms, we investigated links between capacitance and wood anatomy. On twigs of 30 temperate angiosperm tree species, we measured day capacitance (between predawn and midday), water content, wood density, and anatomical traits, that is, vessel dimensions, tissue fractions, and vessel–tissue contact fractions (fraction of vessel circumference in contact with other tissues). Across all species, wood density (WD) and predawn lumen volumetric water content (VWCL-pd) together were the strongest predictors of day capacitance (r2adj = .44). Vessel–tissue contact fractions explained an additional ~10% of the variation in day capacitance. Regression models were not improved by including tissue lumen fractions. Among diffuse-porous species, VWCL-pd and vessel–ray contact fraction together were the best predictors of day capacitance, whereas among semi/ring-porous species, VWCL-pd, WD and vessel–fibre contact fraction were the best predictors. At predawn, wood was less than fully saturated for all species (lumen relative water content = 0.52 ± 0.17). Our findings imply that day capacitance depends on the amount of stored water, tissue connectivity and the bulk wood properties arising from WD (e.g., elasticity), rather than the fraction of any particular tissue.  相似文献   

9.
Tree architecture has important consequences for tree performance as it determines resource capture, mechanical stability and dominance over competitors. We analyzed architectural relationships between stem and crown dimensions for 13 dominant Iberian canopy tree species belonging to the Pinaceae (six Pinus species) and Fagaceae (six Quercus species and Fagus sylvatica) and related these architectural traits to wood density, shade tolerance and climatic factors. Fagaceae had, compared with Pinaceae, denser wood, saplings with wider crowns and adults with larger maximal crown size but smaller maximal height. In combination, these traits enhance light acquisition and persistence in shaded environments; thus, contributing to their shade tolerance. Pinaceae species, in contrast, had low-density wood, allocate more resources to the formation of the central trunk rather than to branches and attained taller maximal heights, allowing them to grow rapidly in height and compete for light following disturbances; thus, contributing to their high light requirements. Wood density had a strong relationship with tree architecture, with dense-wooded species having smaller maximum height and wider crowns, probably because of cheaper expansion costs for producing biomechanically stable branches. Species from arid environments had shorter stems and shallower crowns for a given stem diameter, probably to reduce hydraulic path length and assure water transport. Wood density is an important correlate of variation in tree architecture between species and the two dominant families, with potentially large implications for their resource foraging strategies and successional dynamics.  相似文献   

10.
In tropical dry forests, spatial heterogeneity in soil water availability is thought to determine interspecific differences in key components of resource use strategies, such as leaf phenology and xylem function. To understand the environmental drivers of variation in leaf phenology and xylem function, we explored the relation of soil water potential to topographic metrics derived from a digital elevation model. Subsequently, we compared nine xylem hydraulic, mechanical and storage traits in 18 species in three phenological classes (readily deciduous, tardily deciduous, and evergreen) in the dry tropical forest of Chamela, Mexico. Soil water potential was negatively correlated with elevation, insolation and water flow accumulation. Evergreen species characterized low-elevation moist sites, whereas deciduous species dominated hills and dry sites. Overall, evergreen species had lower xylem specific conductivity than deciduous species, and tardily deciduous species were different from readily deciduous and evergreen species in five of eight xylem traits. In dry tropical forests, water availability promotes divergence in leaf phenology and xylem traits, ranging from low wood density, evergreen species in moist sites to a combination of low wood density, readily deciduous species plus high wood density, tardily deciduous species in dry sites.  相似文献   

11.
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.  相似文献   

12.
Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (P50) related to dry season leaf water potentials and stem and leaf traits. P50‐values ranged from ?0.8 to ?6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade‐tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber‐value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade‐off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their P50, but pioneers and deciduous species had smaller hydraulic safety margins than shade‐tolerants and evergreens. A trade‐off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species.  相似文献   

13.
In the conifer genus Juniperus (Cupressaceae), many species are increasing rapidly in distribution, abundance, and dominance in arid and semiarid regions. To help understand the success of junipers in drier habitats, we studied hydraulic traits associated with their water stress resistance, including vulnerability to xylem cavitation, specific conductivity (K(S)), tracheid diameter, conduit reinforcement, and wood density in stems and roots, as well as specific leaf area (SLA) of 14 species from the United States and the Caribbean. A new phylogeny based on DNA sequences tested the relationships between vulnerability to cavitation and other traits using both traditional cross-species correlations and independent contrast correlations. All species were moderately to highly resistant to water-stress-induced cavitation in both roots and shoots. We found strong phylogenetic support for two clades previously based on leaf margin serration (serrate and smooth). Species in the serrate clade were 34-39% more resistant to xylem cavitation in stems and roots than were species in the smooth clade and had ~35% lower K(S) and 39% lower SLA. Root and stem resistance to cavitation and SLA were all highly conserved traits. A high degree of conservation within clades suggests that hydraulic traits of Juniperus species strongly reflect phylogenetic history. The high resistance to cavitation observed may help explain the survival of junipers during recent extreme droughts in the southwestern United States and their expansion into arid habitats across the western and central United States.  相似文献   

14.
Q. Y. Xu  H. Liu  Q. Ye 《Plant Ecology》2017,218(4):407-415
Plants may change their ecophysiological traits to adapt to new environments, but the responses strongly depend on species and environmental conditions. Magnoliaceae species are of great scientific importance but are extremely endangered, therefore, it is crucial to study their ecophysiological adaptations for ex situ conservation. Here, we chose four common Magnoliaceae species growing in two botanical gardens located in south and north subtropical monsoon regions, and measured hydraulic and photosynthetic traits in both wet and dry seasons. We found that plants growing in north region showed significant lower leaf water potential at predawn and midday than those in south region, indicating that species suffered more severe drought stress in north region. As a result, species in north region had lower stomatal conductance and photosynthetic rates, as well as smaller stomatal pore index. In addition, significantly lower stem hydraulic conductivity of the two deciduous species in north region were observed compared with species in south region, while the two evergreen species at both regions showed similar values of stem hydraulic conductivity. Non-significant differences in leaf turgor loss points, leaf conductance, specific leaf area, and wood density were found when comparing species from the north and south regions. Our results suggested that the adjustment of plant hydraulics to local climatic conditions of Magnoliaceae species occurs primarily through changes in stomatal morphology and function, whereas the contribution of intraspecific variation in leaf hydraulic traits appears to be limited.  相似文献   

15.
Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical‐subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water‐use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence.  相似文献   

16.
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.  相似文献   

17.
三种锦鸡儿属植物水力结构特征及其干旱适应策略   总被引:1,自引:0,他引:1  
龚容  徐霞  田晓宇  江红蕾  李霞  关梦茜 《生态学报》2018,38(14):4984-4993
水分胁迫是干旱半干旱区限制植物生长的主要因素。以干旱半干旱区的3种锦鸡儿属植物为研究对象,从生态适应策略角度来分析3种锦鸡儿植物产生生态分离的原因。对三种锦鸡儿属植物茎干叶片的显微结构、生理功能(导水率、光合速率以及水分利用效率)进行测定,并统计了3种锦鸡儿植株的形态特征,如一、二级枝的直径、长度、末端叶面积。结果表明:三种锦鸡儿属植物都能形成较小的导管直径来适应旱生环境,但是在导水结构上又表现出一定的差异性。中间锦鸡儿的导管直径最小,次脉密度和最大净光合速率最大;柠条锦鸡儿的导管直径、叶片厚度和比叶重(LMA)最大。小叶锦鸡儿在导水率下降50%时的水势(P_(50))最大,水分胁迫时极易发生栓塞,但正是由于导管的栓塞降低了水分运输效率,使其在旱生环境中能够通过减少水分的供应来降低水分的丧失,从而保证自身生长的水分需求;而中间锦鸡儿则主要通过减小导管直径来适应旱生环境;柠条锦鸡儿的水分利用效率最高,抗栓塞能力最强,抗旱性最好,同时柠条锦鸡儿可以通过减少蒸腾面积来减少水分的丧失。植物的导管直径大小、叶片厚度、LMA、叶脉密度对植物导水速率、光合速率等生理功能都有一定的影响。  相似文献   

18.
Current theory presumes that natural selection on vascular traits is controlled by a trade‐off between efficiency and safety of hydraulic architecture. Hence, traits linked to efficiency, such as vessel diameter, should show biogeographic patterns; but critical tests of these predictions are rare, largely owing to confounding effects of environment, tree size and phylogeny. Using wood sampled from a phylogenetically constrained set of 28 Eucalyptus species, collected from a wide gradient of aridity across Australia, we show that hydraulic architecture reflects adaptive radiation of this genus in response to variation in climate. With increasing aridity, vessel diameters narrow, their frequency increases with a distribution that becomes gradually positively skewed and sapwood density increases while the theoretical hydraulic conductivity declines. Differences in these hydraulic traits appear largely genotypic in origin rather than environmentally plastic. Data reported here reflect long‐term adaptation of hydraulic architecture to water availability. Rapidly changing climates, on the other hand, present significant challenges to the ability of eucalypts to adapt their vasculature.  相似文献   

19.
The present study examines the manner in which several whole‐tree water transport properties scale with species‐specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole‐tree behaviour was investigated. Samples of sapwood from four tropical forest canopy tree species selected to represent a range of wood density, tree size and architecture, and taxonomic diversity were used to generate moisture release curves in thermocouple psychrometer chambers, from which species‐specific values of sapwood capacitance were calculated. Sapwood capacitance was then used to scale several whole‐tree water transport properties determined from measurements of upper branch and basal sap flow, branch water potential, and axial and radial movement of deuterated water (D2O) injected into the base of the trunk as a tracer. Sapwood capacitance ranged from 83 to 416 kg m?3 MPa?1 among the four species studied and was strongly correlated with minimum branch water potential, soil‐to‐branch hydraulic conductance, daily utilization of stored water, and axial and radial movement of D2O. The species‐independent scaling of several whole‐tree water transport properties with sapwood capacitance indicated that substantial convergence in plant function at multiple levels of biological organization was revealed by a simple variable related to a biophysical property of water transport tissue.  相似文献   

20.
Woody stems comprise a large biological carbon fraction and determine water transport between roots and leaves; their structure and function can influence both carbon and hydrological cycles. While angiosperm wood anatomy and density determine hydraulic conductivity and mechanical strength, little is known about interrelations across many species. We compiled a global data set comprising two anatomical traits for 3005 woody angiosperms: mean vessel lumen area (ā) and number per unit area (N). From these, we calculated vessel lumen fraction (F = āN) and size to number ratio (S = ā/N), a new vessel composition index. We examined the extent to which F and S influenced potential sapwood specific stem conductivity (K(S)) and wood density (D; dry mass/fresh volume). F and S varied essentially independently across angiosperms. Variation in K(S) was driven primarily by S, and variation in D was virtually unrelated to F and S. Tissue density outside vessel lumens (D(N)) must predominantly influence D. High S should confer faster K(S) but incur greater freeze-thaw embolism risk. F should also affect K(S), and both F and D(N) should influence mechanical strength, capacitance, and construction costs. Improved theory and quantification are needed to better understand ecological costs and benefits of these three distinct dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号