首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Control of pT181 replication II. Mutational analysis.   总被引:25,自引:3,他引:22       下载免费PDF全文
  相似文献   

2.
A Rasooly  P Z Wang    R P Novick 《The EMBO journal》1994,13(21):5245-5251
The Staphylococcus aureus rolling circle plasmid pT181 regulates its replication by controlling the synthesis of its initiator protein RepC. RepC is inactivated during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. We analyzed RepC and RepC* in four classes of mutants: plasmid copy number mutants, two classes of RepC mutants affecting different portions of the protein and oriC (origin) mutants. We have found that in the cell with wild-type RepC there are similar relative amounts of RepC and RepC*, regardless of copy number, and that the conversion of RepC to RepC* is replication dependent. Genetic and biochemical evidence is presented that RepC functions as a dimer and that during replication the RepC homodimer is converted to the RepC/RepC* heterodimer.  相似文献   

3.
The replication of staphylococcal plasmid pT181 is indirectly controlled at the level of the synthesis of its replication initiator, RepC. As a result, high levels of RepC synthesis per plasmid copy were expected to lead to autocatalytic plasmid replication, which secondarily would affect host physiology. Surprisingly, RepC overexpression was found to lead to a rapid decrease in pT181 copy number and replication rate. These effects depended on the ratio of RepC lo the PT181 replication origin rather than on the absolute amount of RepC in the cell. In a wild-type host, the increase in RepC/plasmid copy also inhibited chromosome replication and cell division. The changes in host physiology did not play any role in the decrease in pT181 replication caused by RepC overexpression since pT181 replication responded in the same way in a host mutant insensitive to the effects of RepC induction. These results suggest that pT181, the prototype of an entire class of plasmids from Gram-positive bacteria, responds to overexpression of its replication initiator by a decrease in plasmid replication.  相似文献   

4.
Summary A region encompassing the origin of replication of staphylococcal plasmid pT181 has previously been shown to express an incompatibility effect denoted Inc3B, when cloned into another replicon (Novick et al. 1984). In an attempt to understand the mechanism of this incompatibility effect, and its relationship with the function of the replication origin, mutants deficient in this property were isolated and characterized. The results obtained suggest that the Inc3B effect is due to the competition for replication between the replication origin cloned in a hybrid and the origin of an autonomous plasmid. The Inc3B-deficient mutants isolated expressed different degrees of residual incompatibility. The inc3B mutations which did not express any incompatibility were found also to inactivate the function of the replication origin. All the other mutants which expressed residual Inc3B had a functional origin but presented a significantly reduced ability to use this origin when coexisting with a plasmid using a wild-type pT181 origin. It is suggested that these inc3B mutations represent a new type of origin mutation which affects the ability of the origin to compete with other origins using the same replication system, though the function per se of the origin is not significantly impaired.  相似文献   

5.
6.
S J Projan  R P Novick 《Plasmid》1984,12(1):52-60
An experimental analysis of the concept that incompatible plasmids occupy a common intracellular pool from which copies are drawn at random for replication and assortment is presented. Intrapool variations in an incompatible heteroplasmid strain are inevitable and it is shown that these variations can be exploited by differential selection to amplify one plasmid at the expense of the other. Constant overall copy number is demonstrated for isogenic wild-type replicons and also for isogenic copy mutants whose copy numbers are so great that segregational incompatibility cannot be measured. In the test system used, that of the Staphylococcus aureus plasmid pT181, the rate of replication is probably determined by the availability of a trans-active initiator protein, RepC. In heteroplasmid strains containing wild-type and dominant copy mutant plasmids, although intrapool variation occurs, the total copy number is not constant but varies as a consequence of selection for or against the mutant plasmid. This is because all of the RepC is synthesized from the mutant plasmid (the wild-type is hyper-repressed) and therefore the selection affects the supply of RepC at the same time that it affects the copy number of the plasmid. None of these effects are seen with single plasmids or with compatible pairs.  相似文献   

7.
Anand SP  Chattopadhyay A  Khan SA 《Plasmid》2005,54(2):104-113
Plasmid rolling-circle replication initiates by covalent extension of a nick generated at the plasmid double-strand origin (dso) by the initiator protein. The RepC initiator protein binds to the plasmid pT181 dso in a sequence-specific manner and recruits the PcrA helicase through a protein-protein interaction. Subsequently, PcrA unwinds DNA at the nick site followed by replication by DNA polymerase III. The pcrA3 mutant of Staphylococcus aureus has previously been shown to be defective in plasmid pT181 replication. Suppressor mutations in the repC initiator gene have been isolated that allow pT181 replication in the pcrA3 mutant. One such suppressor mutant contains a D57Y change in the RepC protein. To identify the nature of the defect in PcrA3, we have purified this mutant protein and studied its biochemical activities. Our results show that while PcrA3 retains its DNA binding activity, it is defective in its helicase and RepC-dependent pT181 DNA unwinding activities. We have also purified the RepC D57Y mutant and shown that it is similar in its biochemical activities to wild-type RepC. RepC D57Y supported plasmid pT181 replication in cell-free extracts made from wild-type S. aureus but not from the pcrA3 mutant. We also demonstrate that both wild-type RepC and its D57Y mutant are capable of a direct physical interaction with both wild-type PcrA and the PcrA3 mutant. Our results suggest that the inability of PcrA3 to support pT181 replication is unlikely to be due to its inability to interact with RepC. Rather, it is likely that a defect in its helicase activity is responsible for its inability to replicate the pT181 plasmid.  相似文献   

8.
pT181 is a fully sequenced 4.4-kb 20 copy Tcr plasmid from Staphylococcus aureus. Its replication system involves a unique unidirectional origin embedded in the coding sequence for a plasmid-determined protein, RepC, that is required for initiation. When joined to a 55 copy carrier plasmid, pE194, pT181 excludes autonomous isologous replicons by inhibiting their replication. Two types of spontaneous pT181 copy mutants have been isolated, one that eliminates sensitivity to this inhibition and another that does not. A spontaneous 180-bp deletion, delta 144, eliminates both the inhibitory activity and sensitivity to it. This deletion increases copy number by 50-fold and RepC production by at least 10-fold. It is located directly upstream from the repC coding sequence and the deletion-bearing plasmid supports the replication of inhibitor-sensitive plasmids in cells containing active inhibitor. This effect is probably due to the overproduction of RepC by the delta 144 plasmid. On the basis of these results, it is suggested that RepC synthesis is negatively controlled by an inhibitor that is encoded directly upstream from the repC coding sequence and acts as a tareget set in the same region. It is likely, therefore, that pT181 replication rate is determined by the level of RepC.  相似文献   

9.
Serban Iordanescu 《Plasmid》1983,10(2):130-137
A chromosomal mutation leading to an important increase in the copy number of plasmid pT181 and its derivatives has been isolated from Staphylococcus aureus strain 8325. The amplification effect in the mutant strain SA1350 was found to be specific for plasmids of the Inc3 group, to which belongs pT181. There are some other differences in the behavior of Inc3 plasmids between SA1350 and 8325, including stable maintenance in SA1350 at high copy number of temperature-sensitive replication mutants at restrictive temperatures, and altered incompatibility properties. Derivatives of SA1350 carrying only Inc3 plasmid mutants with high copy numbers (Cop mutants) could not be obtained, suggesting a lethal runaway plasmid replication in this situation. SA1350 expressed also a temperature-sensitive phenotype. The relationship of this character to the plaC1 mutation determining the amplification of Inc3 plasmids has not yet been elucidated.  相似文献   

10.
RepC is rate limiting for pT181 plasmid replication   总被引:13,自引:0,他引:13  
The effect on pT181 plasmid replication of the concentration of the plasmid-coded initiator protein, RepC, has been analyzed. In one type of experiment, plasmid replication was found to stop immediately after the addition of an inhibitory concentration of chloramphenicol (Cm) to growing cultures. Chromosomal replication showed the slow turnoff that is usual for Cm inhibition. Because plasmid replication rate is determined autogenously, no host factor can be rate limiting, suggesting that the specific factor affected is Rep C. In another type of experiment, we constructed a translational fusion between the repC coding sequence and a translationally inducible Cm-acetylase gene, cat-86, using pUB110 as the carrier replicon. The fusion plasmid showed an eightfold amplification of its own copy number and a similar amplification of a co-resident pT181 plasmid upon Cm induction. The amplified plasmids did not show autocatalytic runaway replication but rather established stable elevated copy numbers, indicating the existence of a secondary level of regulation. These results suggest that RepC is rate limiting for pT181 replication and support the hypothesis that pT181 replication is regulated at the level of RepC synthesis. The nature of the secondary regulation is unknown.  相似文献   

11.
pT181 is a Staphylococcus aureus rolling circle plasmid that regulates its replication by controlling the synthesis of its dimeric initiator protein RepC/C and by inactivating the protein following its use in replication (A. Rasooly and R. P. Novick, Science 262:1048-1050, 1993). This inactivation consists of the addition of an oligonucleotide, representing several nucleotides immediately 3' to the initiation nick site, to the active site tyrosine of one of the two subunits, generating a heterodimer, RepC/C*. Previous results suggested that the inactive form was metabolically stable and was present at a much higher level than the active form (A. Rasooly and R. P. Novick, Science 262:1048-1050, 1993). In the present study we have measured total RepC antigen as a function of plasmid copy number and have analyzed the interaction of the two forms. We find that pT181-containing staphylococci contain approximately one RepC dimer per plasmid copy over a 50-fold range of copy numbers. This is consistent with previous measurements of the rate of RepC synthesis, which suggested that one RepC dimer is synthesized per replication event (J. Bargonetti, P.-Z. Wang and R. P. Novick, EMBO J. 12:3659-3667, 1993). The RepC/C* heterodimer, which is inactive for replication, is a competitive inhibitor of the replication and the topoisomerase-like and cruciform-enhancing activities of the native protein. These results suggest that the inactive form may have a specific regulatory role in vivo. Since the known plasmid-determined controls, which maintain a constant plasmid copy number, are designed to ensure the synthesis of one RepC/C dimer per plasmid replication event, it is difficult to envision any role for yet another negative regulator of replication. Conceivably, under conditions where the initiator is overproduced, such as in the absence of the normal antisense regulation of initiator production, RepC/C* could serve as a fail-safe means of preventing autocatalytic replication.  相似文献   

12.
Specificity of RepC protein in plasmid pT181 DNA replication   总被引:6,自引:0,他引:6  
The plasmid pT181 of Staphylococcus aureus consists of 4437 base pairs and encodes resistance to tetracycline. Initiation of pT181 DNA replication specifically requires the plasmid-encoded initiator protein, RepC. The initiator protein binds specifically to a 32-base pair sequence within the pT181 origin of replication. RepC protein also has a nicking-closing activity that is specific for the pT181 origin. Replication of pT181 initiates by covalent extension of the nick and proceeds by a rolling circle mechanism. Two other small, multicopy plasmids pC221 and pS194 belong to the pT181 family and have common structural organization and replication properties. The replication proteins and replication origins of these plasmids have extensive sequence homologies, although they belong to different incompatibility groups. In spite of this homology, the replication proteins and replication origins of these three plasmids do not show any cross-reactivity in vivo. We have carried out a series of in vitro experiments to determine the specificity of pT181-encoded initiator protein, RepC. DNA binding experiments showed that although the binding of RepC to the pT181 origin was very efficient, little or no binding was seen with pC221 and pS194 origins. The nicking-closing activity of RepC was found to be equally efficient with the pC221 and pS194 plasmids. The plasmids pC221 and pS194 replicated efficiently in a RepC-dependent in vitro system. However, replication of these plasmids was greatly reduced in the presence of a competing pT181 origin. The results presented here suggest that nicking-closing by RepC at the origin is not sufficient for maximal replication and that tight binding of RepC to the origin plays an important role in the initiation of DNA replication.  相似文献   

13.
J Bargonetti  P Z Wang    R P Novick 《The EMBO journal》1993,12(9):3659-3667
We have prepared and analyzed two types of gene fusion between the replication initiator gene, repC, and the reporter gene, blaZ, in order to investigate the relationship between pT181 plasmid copy number and RepC initiator protein production. A series of pT181 copy mutant plasmids, with copy numbers ranging from 70 to 800 copies per cell, were analyzed. In one type of gene fusion used in this study, blaZ was translationally coupled to the C-terminal end of the repC coding sequence such that native forms of both proteins were produced. This gene fusion arrangement, which permitted monitoring of RepC production (as BlaZ activity) by plasmids using the protein for their own replication, demonstrated a linear relationship, with one exception, between RepC production and plasmid copy number over a 20-fold range. In the second type of fusion, blaZ was translationally fused to the C-terminal end of repC. As the translational fusion did not produce active RepC protein, the fusion-containing pT181 derivatives were maintained in a strain which provided RepC in trans, and were thus analyzed at constant copy number. In contrast to previous analyses of this type, our translational fusion constructs expressed repC at levels proportional to the copy numbers of the plasmids from which the fusions were prepared. Using these data, we have calculated a minimum figure for the number of RepC molecules synthesized per replication event.  相似文献   

14.
Deletions or insertions in the copB gene of plasmid R1 result in a copy mutant phenotype. The wild-type copB gene has been cloned on various plasmid vectors. The presence of such chimeric plasmids reduced the copy number of R1 copB mutant plasmids to normal or subnormal levels, indicating the expression of a trans-acting inhibitor activity from the copB chimeras. However, the cloned copB gene did not affect the copy number of wild-type R1, and no incompatibility was exerted by the cloned copB gene against wild-type R1 (or R100). Although the copB gene is not normally required for the incompatibility exerted by copA, it is shown that the CopB function is required for expression of incompatibility by the copA gene from some types of chimeric plasmids. Mutant plasmids that have lost both Cop functions replicate in an uncontrolled fashion.  相似文献   

15.
Abstract pT181 is a Staphylococcus aureus rolling circle replicating plasmid whose copy number is controlled by regulating the synthesis and activity of the initiator protein, RepC. The RepC dimer is modified during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. To purify RepC*, RepC was expressed in S. aureus as a fusion protein with a polyhistidine tail. The histidine-tagged RepC retains its initiation and topoisomerase activities in vitro. Histagged RepC/RepC and RepC/RepC* were purified in a two-step procedure. Peptide mapping, mass spectrometric analysis and protein sequencing of purified RepC and RepC* were carried out, and both proteins appeared identical, except that the peptide containing the RepC active site tyrosine used in nicking activity was absent when the purified RepC* sample was analyzed. The absence of the active site in RepC* suggests that this site was modified during replication. The results provide the first direct biochemical evidence that RepC* is a modified form of RepC, and support a model in which RepC replication of pT181 leaves RepC with an oligonucleotide blocking the active site of one of its subunits.  相似文献   

16.
17.
Plasmid repopulation kinetics in Staphylococcus aureus   总被引:7,自引:0,他引:7  
We have analyzed the kinetic route by which the indirectly controlled Staphylococcus aureus plasmid, pT181, responds to and corrects fluctuations in copy number. The kinetics of copy number correction from low to steady-state levels (termed repopulation) were determined using two different methods of copy number reduction. Thermosensitive replication (Tsr) mutants of pT181 were grown at nonpermissive temperatures to lower copy number and then shifted to a permissive temperature to allow repopulation. After the downshift, both wild-type and copy mutant plasmids, with active inhibitors, exhibited a burst of exponential replication that resulted in a two- to threefold overshoot of normal steady-state copy numbers. This was followed by inhibition of replication and eventual reestablishment of the steady-state replication rate. Similar replication kinetics were observed when these plasmids were introduced into naive cells by high-frequency transduction. By contrast, a pT181 copy mutant with a nonfunctional inhibitor-target regulation did not overshoot its steady-state copy number, but instead repopulated asymptotically. These results suggest that at low copy numbers, pT181 and its derivatives replicate at near-maximal rates and overshoot prior to the establishment of an inhibitory concentration of repressor. The maximal replication rate is independent of the plasmid's cop genotype. As the copy number increases, inhibitor accumulates and eventually reduces the replication rate. In the absence of an active inhibitor, the steady-state copy number is established at a level that must be limited by some other invariant factor.  相似文献   

18.
19.
During replication of the plasmid pT181, the initiator protein RepC is modified by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. Here we show that during in vitro replication, RepC* is radioactively labeled, suggesting that the source of the RepC* oligodeoxynucleotide is the newly synthesized pT181 DNA. The RepC/RepC* heterodimer retains its ability to bind the pT181 double-strand origin and, therefore, it may act as a competitive inhibitor of the RepC homodimer during replication.  相似文献   

20.
Several staphylococcal plasmids from different incompatibility (inc) groups which replicate by a rolling circle mechanism each specify a replication initiator protein (Rep) which is homologous with that of the inc3 tetracycline resistance plasmid pT181. The rep gene sequences of six pT181-like plasmids are known, each encoding proteins of molecular mass 38 kDa with 62% overall amino acid sequence identity. The initiation of replication in vivo by each of the Rep proteins is plasmid specific, acting in trans only at the cognate replication origin (ori) of the encoding plasmid. Previous studies in vitro of the RepC protein of pT181 demonstrated replication initiator, topoisomerase-like, and DNA binding activities, which appeared to be specific for the origin (oriC) of pT181 when compared with unrelated staphylococcal plasmids. Although RepD, specified by the inc4 chloramphenicol resistance plasmid pC221, has a range of activities similar to those noted previously for RepC, manipulation of in vitro conditions has revealed discrete steps in the overall reaction of RepD with oriD. In addition, factors have been identified which are necessary not only for sequence-dependent discrimination in vitro by Rep proteins for all pT181-like plasmids but also for the absolute specificity of RepD for its cognate pC221 replication origin (oriD), the latter occurring in vivo and a function of the topological state of the ori-containing target DNA. Here we also demonstrate the presence of a covalent phosphoryl-tyrosine linkage between the RepD protein of plasmid pC221 and an oligonucleotide substrate corresponding to its replication origin (oriD). The reactive tyrosine (Tyr-188) was identified from amino acid sequences of 32P-labeled peptide-oligonucleotide fragments. Substitution of Tyr-188 with phenylalanine confirms the importance of the tyrosyl hydroxyl group since the Y188F protein retains the sequence-specific DNA-binding capabilities of wild-type RepD but is unable to attach covalently to the replication origin or participate in the nicking-closing reaction in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号