首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term data on nitrogen chemistry of streams draining Konza Prairie Biological Station (Konza), Kansas were analyzed to assess spatial and temporal patterns and examine the influence of agricultural activity on these patterns. Upland watersheds of Konza are predominantly tallgrass prairies, but agricultural fields and riparian forests border the lower reaches of the streams. We have up to 11 years of data in the relatively pristine upland reaches and 4 years of data on wells and downstream reaches influenced by fertilized croplands. Seasonal and spatial patterns in total nitrogen (TN) concentrations were driven largely by changes in the nitrate (NO3 ) concentrations. A gradient of increasing NO3 concentrations occurred from pristine upland stream reaches to the more agriculturally-influenced lowland reaches. Nitrate concentrations varied seasonally and were negatively correlated with discharge in areas influenced by row-crop agriculture (p = 0.007). The NO3 concentrations of stream water in lowland reaches were lowest during times of high precipitation, when the relative influence of groundwater drainage is minimal and water in the channel is primarily derived from upland prairie reaches. The groundwater from cropland increased stream NO3 concentrations about four-fold during low-discharge periods, even though significant riparian forest corridors existed along most of the lower stream channel. The minimum NO3 concentrations in the agriculturally influenced reaches were greater than at any time in prairie reaches. Analysis of data before and after introduction of bison to four prairie watersheds revealed a 35% increase of TN concentrations (p < 0.05) in the stream water channels after the introduction of bison. These data suggest that natural processes such as bison grazing, variable discharge, and localized input of groundwater lead to variation in NO3 concentrations less than 100-fold in prairie streams. Row-crop agriculture can increase NO3 concentrations well over 100-fold relative to pristine systems, and the influence of this land use process over space and time overrides natural processes.  相似文献   

2.
Microscopic epilithic algae in the River Itchen at Otterbourne near Southampton and in the Ober Water in the New Forest were studied during 1984 and 1985. The River Itchen rises from chalk springs and has a steady pH near 8.2 and a mean alkalinity of 236 mg HCO3 1–1; at the study site the river is about 16 m wide and 20 cm deep, with a mean flow rate of 0.33 m s–1 and a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The Ober Water, which drains sands and gravels, has a pH between 6.9 and 7.2 and a mean alkalinity of about 50 mg HCO3 1–1; at the study site it is about 6 m wide, with a mean flow rate of 0.27 m s–1 and a discharge ranging through the year between 0.08 and 1.0 m3 s–1.Epilithic algae removed from the pebbles that form the major part of the beds of both streams show seasonal changes in abundance and composition. Diatoms peaked in April/May and dominate the epilithic flora in both streams, comprising 70–95% of all algal cells; highest numbers of chlorophytes occurred in summer and cyanophytes increased in autumn. The species composition of the epilithic flora in the two streams was different, as was the population density; algal cell numbers ranged between 500 and 7000 cells mm–2 of stream floor in the River Itchen and between 8 and 320 cells mm–2 of stream floor in the Ober Water. The chlorophyll a content of epilithic algae in the River Itchen ranged between 115 and 415 mg m–2 of stream floor, representing an annual mean biomass of about 8 g m–2, whereas in the Ober Water a chlorophyll a content of 2.2 to 44 mg m–2 of stream floor was found, representing an annual mean biomass of about 1 g m–2. Cautious estimates of the annual production of epilithic algae in these streams suggest a value of about 600 g organic dry weight m–2 in the River Itchen and about 75 g m–2 in the Ober Water.  相似文献   

3.
Benthic organic matter dynamics in Texas prairie streams   总被引:1,自引:1,他引:0  
Concentrations of benthic particulate organic matter (POM) in six Texas prairie streams (2nd–4th order, intermittent and perennial) were monitored over a 20 month period to determine temporal and spatial dynamics. Benthic POM mass was highly variable, having coefficients of variation (CV) in excess of 300%. Benthic POM mass in all streams was similar with the exception of the 4th order intermittent stream which had significantly higher concentrations. Benthic POM at all sites was dominated by coarse POM (CPOM), followed by fine POM (FPOM), ultrafine POM (UPOM), and medium POM (MPOM). The dominance by CPOM is especially noteworthy in the 4th order intermittent stream where it accounted for 83% of the annual POM mass. Seasonally, benthic POM was highest in summer and lowest in the fall.  相似文献   

4.
Vidal-Abarca  M. R.  Suárez  M. L.  Guerrero  C.  Velasco  J.  Moreno  J. L.  Millán  A.  Perán  A. 《Hydrobiologia》2001,455(1-3):71-78
Annual variations in the concentration of dissolved (DOC) and particulate organic carbon (CPOC = Coarse; FPOC = Fine; UPOC = Ultrafine) were studied in a 100 m-reach of the Chicamo stream, an intermittent saline stream in southeast Spain. DOC represented the most important fraction of organic carbon flowing in the Chicamo stream (>98%), with concentrations of about 1.7 mgC l–1 during most of the year, reaching 2.5 mgC l–1 in summer. One high flow episode during a rain storm in winter was characterized by a considerably increased concentration of DOC (9.4 mgC l–1). CPOC was the dominant POC fraction. Positive and significant correlations were found for DOC and discharge, which support the idea of allochthonous inputs due to floods. There was no significant correlation between POC and discharge. No significant correlations were found for DOC or POC with the physico-chemical parameters measured, while a negative significant correlation was found between DOC and temperature. The export of total organic carbon from the drainage basin of the Chicamo stream was low (6.2 × 10–4 gC m–2 yr–1) and typical of streams in arid and semi-arid regions. The results of a Principal Component Analysis defined three different phases. The first consisted of short periods, during which floods provide pulses of allochthonous organic carbon and nutrients, the second a dry phase (summer), defined by biotic interactions, during which the stream could acts as a `sink' of organic matter, and the third and final phase which is characterised by hydrological stability.  相似文献   

5.
The quality and quantity of allochthonous inputs and of benthic organic matter were investigated in a second-order, perennial mountain stream in the south-west Cape, South Africa, between April 1983 and January 1986. Although the endemic, riparian vegetation is sclerophyllous, low and evergreen, inputs of allochthonous detritus to the stream (434 to 500 g m–2y–1) were similar to those recorded for riparian communities worldwide, as were calorific values of these inputs (9548 to 10 032 KJ m–2y–1). Leaf fall of the riparian vegetation is seasonal, occurring in spring (November) as discharge decreases, resulting in retention of benthic organic matter (BOM) on the stream bed during summer and early autumn (maximum 224 g m–2). Early winter rains (May) scoured the stream almost clean of benthic detritus (winter minimum 8 g m–2). Therefore, BOM was predictably plentiful for about half of each year and predictably scarce for the other half. Coarse BOM (CBOM) and fine BOM (FBOM) constituted 46–64% of BOM standing stock, ultra-fine BOM (UBOM) 16–33% and leaf packs 13–24%. The mean annual calorific value of total BOM standing stock was 1709 KJ m–2. Both standing stocks and total calorific values of BOM were lower than those reported for streams in other biogeographical regions. Values of C:N ratios decreased with decrease in BOM particle size (CBOM 27–100; FBOM 25–27; UBOM 13–19) with no seasonal trends. The stream is erosive with a poor ability to retain organic detritus. Its character appears to be dictated by abiotic factors, the most important of which is winter spates.  相似文献   

6.
We estimated the secondary production of Rhyacophila minora, Ameletus sp., and Isonychia bicolor in three acidic streams and one circumneutral stream in Randolph County, West Virginia. Quantitative benthic samples were collected monthly from these second-order streams from November 1990 to October 1991. Mean pH values in the acidic streams were 4.5, 4.8, and 4.8, and mean pH in the circumneutral stream was 6.7. Production estimates for Rhyacophia minora in the acidic streams were 49.6, 19.2, and 15.8 mg m–2 y–1. Production of R. minora in the circumneutral stream was 1.0 mg m–2 y–1. Ameletus sp. production estimates for the acidic streams were 144.8, 176.8, and 208.3 mg m–2 y–1. Ameletus sp. production in the circumneutral stream was 7.4 mg m–2 y–1. Secondary production of I. bicolor in the circumneutral stream was 116.6 mg m–2 y–1. No Isonychia were collected from the acidic streams. The higher production of R. minora and Ameletus sp. in the acidic streams may be associated with differences in macroinvertebrate community structure.  相似文献   

7.
Quantitative information regarding landscape sources and pathways of organic matter transport to streams is important for assessing impacts of terrestrial processes on aquatic ecosystems. We quantified organic C, a measure of organic matter, flowing from a blackwater stream draining a 12.6 km2 watershed on the upper Atlantic Coastal Plain in South Carolina, and utilized a hydrologic approach to partition this outflow between its various pathways from upland and wetland forest sources. Results of this study indicate that 28.9 tonnes C yr–1 were exported in stream flow, which was estimated to be 0.5% of the annual C input from forest detritus to the watershed. Upland forest, which covers 94% of the watershed area, contributed only 2.0 tonnes C yr–1 to stream flow, which amounted to 0.04% of detritus annually produced by the upland forest. Organic matter was transported from uplands to the stream almost entirely through groundwater. Apparently, upland soils are too sandy to support overland flow, and the sloping topography insufficiently extensive or steep enough to drive important quantities of interflow. Riparian wetland forest, which covers only 6% of the watershed area, contributed 26.9 tonnes C yr–1 to stream flow, amounting to about 10.2% of detritus annually produced by the wetland forest. Dissolved organic C leached from wetland soil accounted for 63% of all organic C entering the stream, and was transported chiefly in baseflow. These results indicate that upland detritus sources are effectively decoupled from the stream despite the sandy soils and quantitatively confirm that even small riparian wetland areas can have a dominant effect on the overall organic matter budget of a blackwater stream. In view of the recognized importance of dissolved organic matter in facilitating transport of other substances (e.g., cation nutrients, metals, and insoluble organic compounds), our results suggest that the potential for movement of these substances through wetland soils to streams in this region is high.  相似文献   

8.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

9.
Methanogenesis in Arizona,USA dryland streams   总被引:1,自引:0,他引:1  
Methanogenesis was studied in five streams of central and southern Arizona by examining the distribution of methane in interstitial water and evasion of methane in three subsystems (hyporheic, parafluvial and bank sediments). In Sycamore Creek, the primary study site (studied during summer and early autumn), methane content of interstitial water exhibited a distinct spatial pattern. In hyporheic (sediments beneath the wetted channel) and parfluvial zones (active channel sediments lateral to the wetted channel), which were well oxygenated due to high hydrologic exchange with the surface stream and had little particulate organic matter (POM), interstitial methane concentration averaged only 0.03 mgCH4-C/L. Bank sediments (interface between the active channel and riparian zone), in contrast, which were typically vegetated, had high POM, low hydrologic exchange and concomitantly low dissolved oxygen levels, had interstitial concentration averaging 1.5 mgCH4-C/L. Methane emission from Sycamore Creek, similar to methane concentration, averaged only 3.7 mgCH4-C·m−2·d−1 from hyporheic and parafluvial zones as opposed to 170 mgCH4-C·m−2·d−1 from anoxic bank sediments. Methane in four additional streams sampled (one sampling date during late winter) was low and exhibited little spatial variation most likely due to cooler stream temperatures. Interstitial methane in parafluvial and bank sediments of all four streams ranged from only 0.005 to 0.1 mgCH4-C/L. Similarly methane evasion was also low from these streams varying from 0 to 5.7 mgCH4-C·m−2·d−1. The effects of organic matter and temperature on methanogenesis were further examined by experimentally manipulating POM and temperature in stoppered flasks filled with hyporheic sediments and stream water. Methane production significantly increased with all independent variables. Methane production is greatest in bank sediments that are relatively isolated hydrologically and lowest in hyporheic and parafluvial sediments that are interactive with the surface stream.  相似文献   

10.
1. We investigated the effect of trophic status on the organic matter budget in freshwater ecosystems. During leaf litter breakdown, the relative contribution of the functional groups and the quantity/quality of organic matter available to higher trophic levels are expected to be modified by the anthropogenic release of nutrients. 2. Carbon budgets were established during the breakdown of alder leaves enclosed in coarse mesh bags and submerged in six streams: two oligotrophic, one mesotrophic, two eutrophic and one hypertrophic streams. Nitrate concentrations were 4.5–6.7 mg L−1 and the trophic status of each stream was defined by the soluble reactive phosphorus concentration ranging from 3.4 (oligotrophic) to 89 μg L−1 (hypertrophic). An ammonium gradient paralleled the phosphate gradient with mean concentrations ranging from 1.4 to 560 μg L−1 NH4‐N. The corresponding unionised ammonia concentrations ranged from 0.08 to 19 μg L−1 NH3‐N over the six streams. 3. The dominant shredder taxa were different in the oligo‐, meso‐ and eutrophic streams. No shredders were observed in the hypertrophic stream. These changes may be accounted for by the gradual increase in the concentration of ammonia over the six streams. The shredder biomass dramatically decreased in eu‐ and hypertrophic streams compared with oligo‐ and mesotrophic. 4. Fungal biomass increased threefold from the most oligotrophic to the less eutrophic stream and decreased in the most eutrophic and the hypertrophic. Bacterial biomass increased twofold from the most oligotrophic to the hypertrophic stream. Along the trophic gradient, the microbial CO2 production followed that of microbial biomass whereas the microbial fine particulate organic matter and net dissolved organic carbon (DOC) did not consistently vary. These results indicate that the microorganisms utilised the substrate and the DOC differently in streams of various trophic statuses. 5. In streams receiving various anthropogenic inputs, the relative contribution of the functional groups to leaf mass loss varied extensively as a result of stimulation and the deleterious effects of dissolved inorganic compounds. The quality/quantity of the organic matter produced by microorganisms slightly varied, as they use DOC from stream water instead of the substrate they decompose in streams of higher trophic status.  相似文献   

11.
Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia)   总被引:1,自引:1,他引:0  
Uptake of NH inf4 sup+ -N by streambed biota of mountain brooks was studied in the alpine zone of the High Tatra Mountains. Experiments were performed involving in situ dosing of ammonium directly to the acidified stream and incubations of ammonium and streambed bryophytes in enclosures within a range of pH from 4.45 to 8.10.NH inf4 sup+ -N uptake length decreased with decreasing stream discharge, while comparable values of discharge-normalized uptake lengths were found during two in situ experiments.Maximum uptake rates of NH inf4 sup+ -N obtained during the incubation of bryophytes (6 to 11 mg m–2 h–1) were comparable with results of two in situ experiments (8 and 12 mg m–2 h–1). The average NH inf4 sup+ -N uptake rates observed during incubations lasting 3 to 5 hours (4.3 mg m–2 h–1) were not related to the pH of stream water. Nitrification of about 50% of the NH inf4 sup+ -N added was observed in non-acidified streams, but was negligible in acidified streams. Significant photoinhibition of nitrification was observed in non-acidified streams during enclosure experiments.  相似文献   

12.
The caddisfly Sericostoma vittatum Rambur (Trichoptera: Sericostomatidae) is an endemic species of the Iberian Peninsula. Under laboratory conditions, larvae of S. vittatum had a higher activity and metabolism during the night. Besides consuming particulate allochthonous organic matter, young stages are also able to feed and grow on faecal pellets from adults. Daily growth rates varied from 0.02 mg (0.8–3.7 mg size class animals) to 0.31 mg dry mass (10.6–22.8 mg size class animals). Due to the high densities of this species (annual mean of 25 individuals m–2; maximum of 96 individuals m–2) and high consumption rates (0.47 mg leaf dry mass mg animal–1 d–1for small larvae), this species has a potential key role on the fragmentation of allochthonous organic matter of streams in central Portugal.  相似文献   

13.
Seasonal variability of dissolved organic carbon ina Mediterranean stream   总被引:1,自引:0,他引:1  
The seasonal variability of dissolved organic carbon(DOC) flux in a Mediterranean stream subjected todischarges of wide range of intensities and variabledry period was studied as a function of the hydrologicconditions, and the relationship between surface andsubsurface (hyporheic and groundwater) DOCconcentration. DOC concentration in stream water(2.6 mg l–1 ±1.5 SD) was higher thangroundwater (1.3 mg l–1 ± 1.2 SD) and lower thanhyporheic water (3.8 mg l–1 ±1.7 SD),suggesting that, at baseflow, stream DOC concentrationincreases when groundwater discharges through thehyporheic zone. Storms contributed to 39% of annualwater export and to 52% of the total annual DOCexport (220 kg km–2). A positive relationship wasobserved between Discharge (Q) and stream DOCconcentration. Discharge explained only 40% of theannual variance in stream DOC, but explained up to93% of the variance within floods. The rate of streamDOC changes with discharge change during storms (dDOC/dQ), ranged between 0 and 0.0045 C mgl–1 s l–1, with minimum values during Springand Summer, and maxima values in Fall and Winter.These dynamics suggest that storm inputs ofterrigenous DOC vary between seasons. During floods inthe dormant season, DOC recession curves were alwayssteeper than discharge decline, suggesting shortflushing of DOC from the leaching of fresh detritusstored in the riparian zone.  相似文献   

14.
Organic material transport in the New River, Virginia, was investigated over a 12 month period. Collections were made using drift nets and grab water samples from bridges at two sites about 210 km apart. About midway between the two sampling sites is a 1920 ha impoundment used for flood control and power generation. Dissolved organic matter (DOM) ranged 1–50 mg l–1 at Site 1, upstream from the impoundment, and 11–19 mg l–1 at Site 2 and was the most abundant form of organic matter at both sites during most periods of the year. Fine particulate organic matter (FPOM) ranged 1–45 mg l–1 at Site 1 and 1–9 mg l–1 at Site 2. Concentration of coarse particulate organic matter (CPOM) ranged 0.1–0.7 mg l–1 at Site 1 and 0.1–0.2 mg l–1 at Site 2. On an annual basis, the organic matter loads at Site 1 and Site 2 were computed to be 67 000 and 76 800 T y–1, respectively, suggesting that the impoundment trapped and processed POM, and that municipal and industrial treatment facilities between the study sites supplemented DOM in the river.  相似文献   

15.
We studied the transport of particulate organic carbon (POC) and dissolved organic carbon (DOC) in two regulated rivers during minimum and increasing discharges. Mean annual concentrations of total POC, measured monthly during conditions of minimum discharge from the dams, were twice as high at a station below a dam with a selective withdrawal system on the Kootenai River (KR, 0.15 mg 1–1), as at station below a dam with hypolimnetic water releases on the Flathead River (FR, 0.07 mg 1–1). Annual mean concentrations of DOC were similar below both dams (1.62 mg 1–1 FR; 1.71 KR). The percentage of POC in four size fractions differed in regulated and unregulated reaches of each river system; the smallest size fraction (0.45–10 smm) constituted a larger percentage of the total POC at the stations below the dams (50–93%), because POC in large size classes had settled out in the reservoir. The three largest size fractions (10–1000 µm) comprised a larger percentage of the total POC when samples were taken during conditions of full discharge from the dam. We measured large increases in all size classes of POC in samples collected during increasing discharges in a regulated reach, reflecting the component of sloughed periphyton and resuspended organic matter that were added during periods of hydropower generation at the dam. Seston (355 µm to 1 cm) collected in nets increased dramatically during increasing flows; concentrations of particulate organic matter (POM) in samples collected two and three hours after water levels began to rise were 572 and 1440 times higher than those collected during minimum discharge at the dam.  相似文献   

16.
C. C. Vaughn 《Hydrobiologia》1982,89(2):177-188
Lake Texoma in southcentral Oklahoma was formed by the impoundment of the Washita and Red Rivers. The Red River is more highly saline than the Washita and creates a complex salinity gradient across the reservoir. Populations of chironomids were monitored with multiple-plate samplers in areas of high (34–113 mg l–1 Cl), intermediate (35–60 mg l–1 Cl) and low (4–27 mg l–1 Cl) salinity during the spring and summer of 1978. Food availability, temperature, salinity and wind direction influenced the distribution of the 14 genera and at least 22 species of chironomids which colonized the multiple-plate samplers. Filter-feeders attained their highest densities in the river-arm stations where levels of particulate organic matter (POM) were high. Algal grazers attained their highest densities in the clear intermediate area where the plates of the samplers were covered with algal mats. Most of the genera believed to be feeding primarily on POM decreased in density as the temperature and density of Glyptotendipes sp. rose. Certain species were restricted to either the Red River arm or the Washita River arm and this is probably a reflection of different salinity tolerances.  相似文献   

17.
Allochthonous input and benthic coarse particulate organic matter (CPOM) standing stocks were investigated in a first-order stream in South Africa between May 1984 and April 1985. Monthly falls into the stream of all litter types (total) ranged from 11 (September) to 79 g m–2 (March). Total annual litter fall was 426 g dry weight, which corresponds to 1.2 g m–2 d–1. Flowers, fruits and seeds contributed 37 g m–2, woody debris, 122 g m–2, and leaves 267 g m–2 to this total. Leaf fall from native trees, which accounted for approximately 57% of total litter input (244 g m–2 a–1), was significantly higher in summer than in winter. The summer peak in leaf fall recorded is far smaller and more protracted than the autumnal peak recorded for many Northern Hemisphere streams.Monthly total standing stocks of CPOM ranged from 14 g dry weight m–2 in January to 69 g m–2 in August, and a mean total CPOM standing stock of 41 g m–2 mth–1 was estimated. This comprised 18 g m–2 mth–1 soft litter, and 23 g m–2 mth–1 hard litter. CPOM standing stocks showed no seasonal trends, and with the exception of two species, standing stocks of endemic leaf species reflected their contributions to the total litter fall. Contrary to earlier reports for streams in the Fynbos Biome, Window Stream has CPOM standing stocks well within the ranges reported for low-order streams worldwide.  相似文献   

18.
19.
Phosphorus (P) loads from point sources have a significant influence on dissolved P concentrations in streams and sediment-water column dynamics. The goal of this study was to quantify dissolved P concentrations and sediment-P interactions in Ozark (USA) headwater streams with high point source P loads. Specifically, the objectives were to: (1) compare soluble reactive P (SRP) upstream and downstream from wastewater treatment plant (WWTP) effluent discharges; (2) examine longitudinal gradients in SRP downstream from WWTPs; (3) evaluate the effect of WTTP P inputs on sediment-water column P equilibrium and sediment exchangeable P. Water and sediment samples were collected, extracted and analyzed from July 2002 through June 2003 at these Ozark streams. Mean SRP concentrations in the select Ozark streams were significantly greater downstream from effluent discharges (0.08–2.10 mg L−1) compared to upstream (0.02–0.12 mg L−1). Effluent discharge from the WWTPs increased equilibrium concentrations between stream sediments and the water column; mean sediment equilibrium P concentration (EPC0) was between 0.01–0.07 mg L−1 upstream from WWTP and the increase downstream was proportional to that observed in water column SRP. Sediment exchangeable P (EXP) was greater downstream from the effluent discharges (0.3–6.8 mg kg−1) compared to upstream (0.03–1.4 mg kg−1), representing a substantial transient storage of P inputs from WWTPs. Furthermore, P was generally not retained in these stream reaches when dilution was considered using a hydrologic tracer and was released in one stream reach where effluent P concentrations decreased over the study period. Thus, the effect of the WWTPs was profound in these streams increasing water column and sediment-bound P, and also reducing the ability of these stream reaches to retain P. In P-enriched streams, effluent P discharges likely regulate sediment and aqueous phase P equilibrium and sediment bioavailable P, not the sediments.  相似文献   

20.
Dissolved organic carbon (DOC) dynamics were examined over five years (1989–1993) in Sycamore Creek, a Sonoran Desert stream, specifically focusing on DOC concentration in surface and hyporheic waters, and rates of export. In 1989 and 1990, the years of lowest stream discharge (0.08 and 0.04 m3 s–1 annual mean of daily discharge, respectively), DOC was high, averaging 7.37 and 6.22 mgC l–1 (weighted annual means). In contrast, from 1991 through 1993, a period of increased flow (1.1, 1.2 and 4.3 m3 s–1), concentration was significantly lower (P<0.001) with annual mean concentrations of 3.54, 3.49 and 3.39 mgC l–1. Concentration exhibited little spatial variation between two sampling stations located 6 km apart along the mainstem or between surface and hyporheic waters. Annual export of DOC from Sycamore Creek varied 100-fold over the five-year period from a mean rate of only 24 kgC d–1 in 1990 to 2100 kgC d–1 in 1993. Ninety percent of DOC was exported by flows greater than 2.8 m3 s–1, and 50% during flows greater than 27 m3 s–1; flows of 2.8 and 24 m3 s–1 occurred only 9 and 1% of the time. The export of organic matter in Sycamore Creek appears to be coupled to El Niño-Southern Oscillation phenomena. The years of highest export, 1991–1993, had El Niño conditions while 1989 and 1990 had medial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号