首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trophic state of Lake Ladoga as indicated by late summer phytoplankton   总被引:2,自引:2,他引:0  
As a part of the joint Russian-Finnish evaluation of human impact on Lake Ladoga, we studied the phytoplankton of the lake in order to find biological indicators for eutrophication. A second aim of the investigation was intercalibration of sampling and phytoplankton counting techniques between the Russian and Finnish laboratories. Phytoplankton samples were collected from 27 sampling stations in the lake and from the rivers Volkhov and Neva in 9–13 August 1993. In surface water samples the phytoplankton fresh weight biomass varied in the range 218–3575 mg m–33. Highest biomass values were encountered in Sortavala Bay, and lowest ones in the western central part of the lake. Phytoplankton species composition varied considerably in the lake; blue-green and green algae predominated near-shore areas and Cryptophyceae in the offshore stations. Canonical correspondance analysis revealed close grouping of eutrophy indicating communities, dominated mainly by greens and blue-greens, in the most nutrient-rich parts of Lake Ladoga, the Volkhov and Svir Bays. Samples from the vicinity of the inflows of Vuoksi and Burnaya Rivers and off Pitkaranta formed a separate group, dominated by diatoms, most of which were typical to mesotrophic or eutrophy lakes. As judged by phytoplankton biomass values and chlorophyll a concentrations, Lake Ladoga may generally be classified as mesotrophic. Eutrophicated areas are found in the northern archipelago of the lake and in the areas influenced by large rivers.  相似文献   

2.
Sedimentary phosphorus fractions and phosphorus release from the sediments were studied in Lake Ladoga at altogether 46 sampling sites, representing the full range of sediment types encountered in the lake. Determination of P fractions and physico-chemical analyses were made of surface sediment cores (10–20 cm long, each sampled at 3–4 levels) and in the overlying water. The range of total phosphorus per dry weight of sediment was 0.2–3.3 mg g–1, and that of inorganic P 0.1–2.5 mg g–1. The levels of interstitial soluble phosphorus, range 2–613 µg 1–1 for total P and 1–315 µg 1–1 for inorganic P, were higher than those of dissolved P concentrations in the overlying water. Diffusive fluxes of phosphate from sediment to the overlying water were estimated using three independent methods. The estimated range was 4–914 µg P m–2 d–1; the mean value for the whole bottom area, 0.1 mg P m–2 d–1, is lower than previously published estimates. The estimated annual contribution of sedimentary inorganic P flux to Lake Ladoga water is equal to 620 tons of P per year, which amounts to more than 10% of the estimated external P load into the lake. 68% of the total diffusive flux emanates from deep water sediments, which are not exposed to seasonal variation of conditions. In deep lakes, such as Lake Ladoga, phosphorus release from the sediments is controlled primarily by diffusive mechanisms. Wave action and currents as well as bioturbation are probably of importance mainly in shallow near-shore areas. Phosphorus release by gas ebullition and macrophytes is considered negligible.  相似文献   

3.
Twentyfive cyanobacterial blooms in Lake Ladoga and adjacent water bodies were studied in the summer of 1990–1992. Toxicity of the water bloom material for mice was detected in 9 cases. The maximal tolerable doses (MTD) of the material extracted from biomass varied within 3–30 mg kg–1 mouse body weight; 50% lethal doses (LD50) were within 45–125 mg kg–1. Toxic water blooms were registered in Karelian lakes and in the Neva Bay, Gulf of Finland. Cyanobacterial samples collected on the eastern coast of Lake Ladoga proved to be non-toxic. The species identified in toxic bloom material included Anabaena circinalis, A. flos-aquae, A. lemmermannii, Anabaena sp., Aphanizomenonflos-aquae, Gloeotrichia echinulata, G. pisum, Microcystis aeruginosa and Oscillatoria sp. These data suggest that toxic forms of cyanobacteria are widespread in Karelian lakes belonging to the drainage basin of Lake Ladoga.  相似文献   

4.
In order to evaluate the current state of Lake Ladoga a comprehensive investigation of its pollution by metals, oil products, phenols, anionic detergents and 3,4-benzopyrene was carried out in July 1993. The results indicate a considerable pollution of the lake waters by metals and phenols. High degree of pollution of sediments by oil products and 3,4-benzopyrene was detected in the northern archipelago and bays (Impilahti, Hiidenselka, Pitkäranta) and in the area of Priozersk. A new index (I t ) is suggested for the estimation of biochemical self-purification capacity of freshwaters. Values of the index obtained for different parts of Lake Ladoga led us to the conclusion that at the present time the lake's capability for biochemical self-purification is relatively low. This situation is caused by strong anthropogenic impact on the lake. The approximate pollutant loads to Lake Ladoga were estimated on the basis of our 1991–1993 monitoring survey and from literature data.  相似文献   

5.
In Mono Lake (California), a large saline lake, chlorophyll concentrations in the euphotic zone increased from 4 to 45 µg l–1 between July and October 1979. These seasonal changes in chlorophyll are detectable on imagery obtained with the multispectral scanner on Landsat. Computer-compatible tapes of Landsat images were normalized for solar zenith and corrected for atmospheric scatter and absorption to obtain Landsat band 4 emittances (W m–2 str–1) of 13.4 ± 0.5 when chlorophyll was 4 µg l–1 and 4.6 ± 0.3 when chlorophyll was 45 µg l–1. Lake wide, spatial heterogeneity of chlorophyll of 2 µg l–1 in July and 8 µg l–1 in October was not detectable on the Landsat imagery.  相似文献   

6.
The data on benzo(a)pyrene (BaP) and other polynuclear aromatic hydrocarbons (PAH) pollution of Lake Peipsi and its tributaries in the 1970s–1980s have been summarized. Systematic data on the pollution of Lake Peipsi by BaP are available. The BaP content in lake water varied from <0.1 to 237 ng 1–1. The content and qualitative composition of PAH varied in different observations. PAH were accumulated mainly in the bottom sediments; in their surface layer BaP concentrations were 103–106 times higher than in water. The concentration of the PAH in bottom sediments varied from 16 to 580 µg kg–1 in the lake and from 40 to 2800 µg kg–1 in its tributaries. The content of BaP in fish and biota was not high. Among the pollution sources the atmospheric pollution played quite a significant role. The lake was also polluted by oil spillage and fuel exhausts from boats and ships. The PAH concentration in the water of the tributaries was somewhat higher than in the area of Lake Peipsi.  相似文献   

7.
Gulati  R. D.  Ejsmont-Karabin  J.  Rooth  J.  Siewertsen  K. 《Hydrobiologia》1989,(1):347-354
Phosphorus (PO4-P) and nitrogen (NH4-N) excretion rates of Euchlanis dilatata lucksiana, a rotifer, isolated from Lake Loosdrecht (The Netherlands) and cultured in the lake water at 18–19 °C, were measured in the laboratory.In a series of experiments, the effects of experiment duration on the P and N excretion rates were examined. The rates measured in the first half-hour were about 2 times higher for P and 2–4 times for N than the rates in the subsequent three successive hours which were quite comparable.Eight experiments were carried out in triplicate, 4 each for P and N excretion measurements, using animals of two size ranges: 60–125 µm and > 125 µm. The specific excretion rates varied from 0.06 to 0.18 µg P.mg–1 DW.h–1 and 0.21 to 0.76 µg N.mg–1 DW.h–1. Generally an inverse relationship was observed between the specific excretion rates and the mean individual weight. The excretion rates of Euchlanis measured by us are lower than those reported for several other rotifer species, most of which are much smaller than Euchlanis.Extrapolating the excretion rates of Euchlanis to the other rotifer species in Lake Loosdrecht, and accounting for their density, size and temperature, rotifer excretion appears to be a significant, potential nutrient (N,P) source for phytoplankton growth in the lake. The excretion rates for the rotifers appear to be about two thirds of the total zooplankton excretion, even though the computed rotifer mean biomass is about one-third of the total zooplankton biomass.  相似文献   

8.
The abundances, biomass, and seasonal succession of rotifer and crustacean zooplankton were examined in a man-made, eutrophic lake, Lake Oglethorpe, over a 13 month period. There was an inverse correlation between the abundance of rotifers and crustaceans. Rotifers were most abundant and dominated (>69%) the rotifer-crustacean biomass during summer months (June–September) while crustacean zooplankton dominated during the remainder of the year (>89%). Peak biomasses of crustaceans were observed in the fall (151 µg dry wt l–1 in October) and spring (89.66 µg dry wt l–1 in May). Mean annual biomass levels were 46.99 µg dry wt l–1 for crustaceans and 19.26 µg dry wt l–1 for rotifers. Trichocerca rousseleti, Polyarthra sp., Keratella cochlearis and Kellicottia bostoniensis were the most abundant rotifers in the lake. Diaptomus siciloides and Daphnia parvula were the most abundant crustaceans. Lake Oglethorpe is distinct in having an unusually high abundance of rotifers (range 217–7980 l–1). These high densities can be attributed not only to the eutrophic conditions of the lake but also to the detailed sampling methods employed in this study.The research was supported by National Science Foundation grants DEB 7725354 and DEB 8005582 to Dr. K. G. Porter. It is lake Oglethorpe Limnological Association Contribution No. 25 and Contribution No. 371 of the Harbor Branch Foundation, Inc.  相似文献   

9.
Vadim E. Panov 《Hydrobiologia》1996,322(1-3):187-192
Gmelinoides fasciatus Stebb., a small amphipod from the Lake Baikal basin, was discovered in July 1988 in Lake Ladoga, the largest European lake. G. fasciatus likely invaded Lake Ladoga as a consequence of its intentional introduction, aimed at enhancing fish production, in some Karelian Isthmus lakes close to Lake Ladoga's western shore in the early 1970's. Benthos studies conducted in 1989 and 1990 revealed that G. fasciatus was well established in littoral communities along the western and northern shores of Lake Ladoga. G. fasciatus was the dominant species in these littoral communities and contributed over 70% of the macroinvertebrate biomass. The species was abundant in different macrophyte beds and stony littoral areas, both in heavily polluted and undisturbed sites. The maximum abundance and biomass of G. fasciatus was about 54,000 ind m–2 and 160 g (wet wt.) m–2. Negative impacts of G. fasciatus on native species have been observed. Studies are needed to identify the effects of G. fasciatus on the functioning of littoral communities and to predict and control the spread of this amphipod.  相似文献   

10.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

11.
Biomanipulation improved water transparency of Lake Zwemlust (The Netherlands) drastically. Before biomanipulation no submerged vegetation was present in the lake, but in summer 1987, directly after the measure, submerged macrophyte stands developed following a clear-water phase caused by high zooplankton grazing in spring. During the summers of 1988 and 1989 Elodea nuttallii was the most dominant species and reached a high biomass, but in the summers of 1990 and 1991 Ceratophyllum demersum became dominant. The total macrophyte biomass decreased in 1990 and 1991. In 1992 and 1993 C. demersum and E. nuttallii were nearly absent and Potamogeton berchtholdii became the dominant species, declining to very low abundance during late summer. Successively algal blooms appeared in autumn of those years reaching chlorophyll-a concentrations between 60–130 µg l–1. However, in experimental cages placed on the lake bottom, serving as exclosures for larger fish and birds, E. nuttallii still reached a high abundance during 1992 and 1993. Herbivory by coots (Fulica atra) in autumn/winter, and by rudd (Scardinius erythrophthalmus) in summer, most probably caused the decrease in total abundance of macrophytes and the shift in species composition.  相似文献   

12.
Gulati  R. D.  Ejsmont-Karabin  J.  Postema  G. 《Hydrobiologia》1993,255(1):269-274
Ingestion and assimilation rates of Euchlanis dilatata lucksiana Hauer, isolated from Lake Loosdrecht (The Netherlands) and cultured on lake water (seston < 33 µm), were measured in the laboratory using the 14C-tracer technique. The five taxa used as tracer foods, together with 6–7 mg C l–1 of lake seston in each case, included four species of filamentous cyanobacteria (Oscillatoria redekei, O. limnetica, Aphanizomenon flos-aquae, Anabaena PCC 7120) and a prochlorophyte (Prochlorothrix hollandica). Except Anabaena, they are all commonly encountered in eutrophic Loosdrecht lakes, including Lake Loosdrecht, and their dimensions ranged between 150 and 250 µm in length and 2 and 3.5 µm in width. The small and large Euchlanis used as experimental animals had mean lengths of 217–223 µm and 276–305 µm, respectively. Euchlanis fed on all the taxa offered as food. Clearance rates ranged from 51 to 99 µl ind–1 d–1 for the large animals and from 22 to 41 µl ind–1 d–1 for the small animals. The highest ingestion rate observed, 1.7 µg ind–1 d–1, was for the large animals feeding on Aphanizomenon. The daily ration for both size classes far exceeded 100% of body weight, reaching up to 690% for the small animals feeding on Aphanizomenon. The small animals generally appeared to assimilate the ingested food more efficiently (assimilation efficiencies: 37–100%) than the large animals (34–77%). Compared with an earlier study in which only lake seston (<33 µm) was used as food, the specific clearance rates of Euchlanis on the cyanobacteria and Prochlorothrix were generally somewhat lower.  相似文献   

13.
May  Linda 《Hydrobiologia》1995,(1):333-340
Seathwaite Tarn, in the English Lake District, was used as an experimental site to test the feasibility of increasing the pH of an acidified waterbody by adding a phosphorus-based fertiliser solution. The impact of this experiment on the planktonic rotifer community was assessed by monitoring for two years before treatment (1990–1991), and for a further two years once treatment had begun (1992–1993). The pH of the water rose by 0.5 pH units over the period of fertilisation, and the lake became very eutrophic. This had little effect on the species composition of the rotifer assemblage, which continued to reflect the acid, oligotrophic nature of the untreated lake. However, there were marked changes in the levels of abundance of most planktonic species. Population densities of Keratella serrulata and Trichocerca longiseta increased in early spring, compared to pre-treatment levels, apparently due to the rises in chlorophyll-a concentrations. In contrast, Polyarthra dolichoptera became very scarce after fertilisation began. The treatment seemed to have little effect on the population dynamics of the dominant openwater rotifer, Polyarthra remata. In 1993, very high densities of Bosmina coregoni (up to 250 × 103 ind M–3 ) developed in response to the eutrophication programme. This seemed to suppress the rotifer community in the summer months.  相似文献   

14.
The productivity and ecological role of benthos in man-made Lake Kariba was assessed through the use of P/B-ratios and by measuring the metabolism (respiration, N and P excretion) of the most abundant mussel species (Aspatharia wahlbergi, Corbicula africana and Caelatura mossambicensis) in laboratory experiments. For A. wahlbergi also filtration rate was estimated.The annual production of benthos for the populated 0–12 m interval was estimated at 11.0 g m –2 yr–1 (shellfree dry weight) of which mussels contributed for 8.81 g (80%), snails 2.16 g (20%) and insects 0.03 g (0.3%) respectively. The most important mussel species in the lake were Caelatura mossambicensis (4.97 g m–2 yr–1) and Corbicula africana (3.33 g). The dominant snail species was Melanoides tuberculata (1.63 g). For the total lake, also including deeper unpopulated bottoms, the annual production of benthos was 2.70 g m–2 yr–1 (shell-free dry weight).Respiration and excretion varied with temperature displaying a bell-shaped relationship. Metabolic rates in Aspatharia wahlbergi increased about 5× between 16.5 °C and the maximum at 34.0 °C and then decreased again at 39.0 °C, when the mussels showed signs of severe stress. Metabolism in Corbicula africana had a lower optimum with fairly constant activity between 18.6 and 29.2 °C, rapidly decreasing above this temperature.The average respiration, nutrient excretion and water filtration rates for mussels in Lake Kariba at 25.2 °C were estimated to about 0.6 mg O2 85 µg NH4–N, 1.5 µg PO4–P and 0.51 water filtered h–1 g–1 shellfree dry weight. This gives that a volume corresponding to about the total epilimnion of the lake is filtered by the mussels annually. Further, mussels can be estimated to remineralise % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaac+% cacaaI0aaaaa!3A2B!\[1/4\] of the total load of phosphate, and 8 times the total load of nitrogen every year. The population needs 3.5 × 104 tons of organic carbon for its maintainance, which indicates that about 5% of the annual phytoplankton production is channeled through mussels. We conclude that the mussels, rather than being an important food source for fish, seem to play a large role in the nutrient dynamics of Lake Kariba.  相似文献   

15.
Phosphorus and nitrogen excretion rates by zooplankton communities from two eutrophic and shallow Dutch lakes were measured in laboratory. The variations in excretion rates in the lakes (May–October) were caused mainly by fluctuation in zooplankton biomass. Mean summer excretion rates (June–September) were 2.4 and 0.9 µg PO4P·1–1·d–1 in Lake Loosdercht and Lake Breukeleveen, respectively. This difference between the lakes was caused mainly by the lower zooplankton biomass in Lake Breukeleveen. The excretion of 2.4 µg PO4P·1–1·d compared with the calculated P-demand of phytoplankton of 8.0 µg PO4P·1–1·d–1 is substantial in the summer (June–September) and far more important than the external P-supply of 0.4 µg P·1–1·d–1 and sediment release of 0.5 µg P·1–1·d–1. Both temperature and composition of zooplankton affected the weight specific excretion rates of the zooplankton community. The weight specific community excretion rates of P and N increased with temperature (exponential model); 1–8 g PO4P·mg–1 zooplankton-C·d–1 and 5–42 µg NH3N·mg–1 zooplankton-C·d–1 (10°C–20°C).  相似文献   

16.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

17.
Evidence for the influence of food type and heavy metals on shell growth and fertility is presented for a freshwater population of the snail P. jenkinsi. When fed an excess of lettuce or lamb heart (protein source), growth rates were higher for lettuce. Highest growth rates occurred at a diet of lettuce plus lamb heart. Fertility was favoured by a diet of lamb heart. When fed an excess of lettuce, the EC50 growth values were 16 µg Cd l–1, 13 µg Cu l–1, and 103 µg Zn l–1 in lake water; snail fertility was inhibited at 25 µg Cd l–1 and 30 µg Cu l–1. A diet of lake detritus spiked with Cd or Cu resulted in a decrease of approximately 50% in growth rates, when compared with growth on non-spiked detritus. Spiked detritus lost metals into lake water. Food type positively interacted with metal stress, both for growth rate and fertility. The assessment of inhibitory effects of detritus contaminated either in the field or, notably, by spiking, and serving as food source for deposit feeders is hampered by sampling problems in the field and by redistribution processes of pollutants between particles and water in laboratory-scale experiments.  相似文献   

18.
Walker Lake is a monomictic, nitrogen-limited, terminal lake located in western Nevada. It is one of only eight large (Area>100 km2, Z { mean}>15 m) saline lakes of moderate salinity (3–20 g l–1) worldwide, and one of the few to support an endemic trout fishery (Oncorhynchus clarki henshawi). As a result of anthropogenic desiccation, between 1882 and 1996 the lake's volume has dropped from 11.1 to 2.7 km3 and salinity has increased from 2.6 to 12–13 g l–1. This study, conducted between 1992 and 1998, examined the effects of desiccation on the limnology of the lake. Increases in salinity over the past two decades caused the extinction of two zooplankton species, Ceriodaphnia quadrangula and Acanthocyclops vernalis. Recent increases in salinity have not negatively affected the lake's dominant phytoplankton species, the filamentous blue-green algae Nodularia spumigena. In 1994 high salinity levels (14–15 g l–1) caused a decrease in tui chub minnow populations, the main source of food for Lahontan cutthroat trout, and a subsequent decrease in the health of stocked trout. Lake shrinkage has resulted in hypolimnetic anoxia and hypolimnetic accumulation of ammonia (800–2000 g-N l–1) and sulfide (15 mg l–1) to levels toxic to trout. Internal loading of ammonia via hypolimnetic entrainment during summer wind mixing (170 Mg-N during a single event), vertical diffusion (225–500 Mg-N year–1), and fall destratification (540–740 Mg-N year–1) exceeds external nitrogen loading (<25 Mg-N year–1). Increasing salinity in combination with factors related to hypolimnetic anoxia have stressed trout populations and caused a decline in trout size and longevity. If desiccation continues unabated, the lake will be too saline (>15–16 g l–1) to support trout and chub fisheries in 20 years, and in 50–60 years the lake will reach hydrologic equilibrium at a volume of 1.0 km3 and a salinity of 34 g l–1.  相似文献   

19.
Biomass and activity of planktonic bacteria were investigated during a one year study in a shallow sandpit lake. The shallowness of the lake helped keep the water column homogeneous regarding bacterioplankton. Small free-living bacteria (0.03 µm3 cell–1) dominated the populations throughout the period studied. Bacterial abundances varied from 1 to 11 × 106 cells ml–1. Kinetic parameters (V max, K + S and T) were determined with 14C labelled compounds (glucose and amino acids mixture). V max values were high and averaged 0.056 and 0.050 µgCl–1 h–1 for glucose and amino acids respectively. Maximal V max values were observed in summer at the highest temperatures, but also in early spring. T values were much greater in winter. K + S values were significantly higher for amino acids (3 µg Cl–1) than for glucose (1 µg Cl–1). A low percentage of mineralization (about 25% for both tracers) could be the expression of the high growth efficiency expected when bacteria are growing at the expense of low molecular weight compounds as phytoplankton exudates.  相似文献   

20.
Kaj Granberg 《Hydrobiologia》1996,322(1-3):159-166
The aim of this study is to show the effects of the Pitkäranta pulp mill on the water quality of Northern Ladoga by using water quality models. The effluent loading of the pulp mill with its full production capacity is as follows: Water flow 85 000 m3 d–1 BOD5 2.4 t d–1 Suspended solids 4.1 t d–1 tot-N 330 kg d–1 tot-P 68 kg d–1 COD(Cr) 14.4 t d–1 Org. C 6 t d–1 Lignosulphonates 9.4 t d–1 Loadings of lignosulphonates and organic C are estimations. Lignosulphonate concentrations of 10.5 mg 1–1 have been reported in the region of Pitkäranta. The study area of northern Ladoga near the pulp mill was divided into three zones (I, II and III). The mean depth of each of them is considered as 10 m, their respective areas 5, 10 and 50 km2, and volumes 50, 100 and 500 million m3. The estimated discharges of the zones are 10, 20 and 50 m3 s–1, respectively. With the aid of simple water quality models the effects of the pulp mill effluents on the concentrations of oxygen, total phosphorus, lignin, COD(Mn) and Secchi disk depths in each of the zones were estimated. Estimations were made during full production capacity and half production capacity of the pulp mill. The modelling results were compared with the preliminary water analysis results of the Finnish-Russian joint research expedition into Lake Ladoga in August 1993. The results show that near the pulp mill (zone I) phosphorus concentrations are high even with half production capacity. Also lignin and COD(Mn) contents have increased, and oxygen concentrations are low both in the summer and during wintertime. Farther away in the open water (zone III) the pollution effects are low. Eutrophication, indicated by high total phosphorus concentrations, is the main effect of the pulp mill effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号