共查询到20条相似文献,搜索用时 15 毫秒
1.
Voss MW Nagamatsu LS Liu-Ambrose T Kramer AF 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(5):1505-1513
This is a brief review of current evidence for the relationships between physical activity and exercise and the brain and cognition throughout the life span in non-pathological populations. We focus on the effects of both aerobic and resistance training and provide a brief overview of potential neurobiological mechanisms derived from non-human animal models. Whereas research has focused primarily on the benefits of aerobic exercise in youth and young adult populations, there is growing evidence that both aerobic and resistance training are important for maintaining cognitive and brain health in old age. Finally, in these contexts, we point out gaps in the literature and future directions that will help advance the field of exercise neuroscience, including more studies that explicitly examine the effect of exercise type and intensity on cognition, the brain, and clinically significant outcomes. There is also a need for human neuroimaging studies to adopt a more unified multi-modal framework and for greater interaction between human and animal models of exercise effects on brain and cognition across the life span. 相似文献
2.
Jarbas S. Roriz-Filho Ticiana M. Sá-Roriz Idiane Rosset Ana L. Camozzato Antonio C. Santos Márcia L.F. Chaves Júlio César Moriguti Matheus Roriz-Cruz 《生物化学与生物物理学报:疾病的分子基础》2009,1792(5):432-443
Cognitive dysfunction and dementia have recently been proven to be common (and underrecognized) complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much insulin in the brain may be associated with reduced amyloid-β (Aβ) clearance due to competition for their common and main depurative mechanism — the Insulin-Degrading Enzyme (IDE). Since IDE is much more selective for insulin than for Aβ, brain hyperinsulinism may deprive Aβ of its main clearance mechanism. Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperphosphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy. In fact, diabetes subjects are more prone to develop extense and earlier-than-usual leukoaraiosis (White Matter High-Intensity Lesions — WMHL). WMHL are usually present at different degrees in brain scans of elderly people. People with more advanced WMHL are at increased risk for executive dysfunction, cognitive impairment and dementia. Clinical phenotypes associated with insulin resistance possibly represent true clinical models for brain and systemic aging. 相似文献
3.
It is now well documented that normal aging modifies the cognitive functioning and most observations suggest that cognition evolves in the direction of deterioration. The more frequently impaired functions are memory, attention and visual-spatial abilities. On the other hand, some abilities seem to increase, such as vocabulary. Considering the aging effect on cognition, questions remain regarding directionality, universality and reversibility. A great variability in aged related impacts is observed among subjects and among cognitive domains. Some individuals evolved more rapidly than others. Some cognitive functions are more affected by aging than others. General and specific factors are hypothesized to explain the aged related cognitive decline. Among them, educational level, health, cognitive style, life style, personality, are likely to modulate the aged related cognitive evolution by influencing attentional resources and cerebral plasticity. Cognitive resources are essential to develop adaptative strategies. During the life span, resources are activated and increased by learning and training. Considering the role of cognitive resources, successful aging is dependent on several conditions : absence of disease leading to a loss of autonomy, maintenance of cognitive and physical activities, and active and social engaged lifestyle. 相似文献
4.
5.
The aging brain, metals and oxygen free radicals. 总被引:4,自引:0,他引:4
In this overview we bring together certa in facts and concepts that support the theory that the aging of "disease-free" brain is a consequence of the accumulated cellular-molecular modifications caused by oxygen free radicals. The relevance of transition metals, especially iron ions, in the production of oxygen free radicals, initiation of oxidative chain-reactions and in site-specific molecular modifications is documented. Mitochondria are identified as the major source of oxygen free radicals, and mitochondrial DNA is a likely target. Special attention is given to iron-sulfur clusters as sources of reactive iron and sites of modifications. Potential mechanisms by which oxygen free radicals can alter membrane receptors and intracellular signaling are cited. Although the evidence is still correlative, the oxygen free radical theory has strong experimental support and has promise for facilitating a better understanding of the "disease-free", aging brain. 相似文献
6.
I Kracun H Rosner V Drnovsek M Heffer-Lauc C Cosovi? G Lauc 《The International journal of developmental biology》1991,35(3):289-295
In this study, brain gangliosides in prenatal and postnatal human life and Alzheimer's disease were analyzed. Immunohistochemically, the presence of the "c"-series of gangliosides (GQ1c) was only registered in the embryonic brain at 5 weeks of gestation. Biochemical results indicated a two-fold increase in ganglioside concentration in the human cortex between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except in the cerebellar cortex, which was characterized by increasing GT1b. During prenatal human development, regional differences in ganglioside composition could only be detected between the cerebrum ("a"-pathway) and the cerebellum ("b"-pathway). Between birth and 20-30 years of age, a cerebral neocortical difference of ganglioside composition occurred, characterized by the lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In the frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in the occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In the cerebellar cortex, GD1b and GT1b fractions decreased with aging. In Alzheimer's disease, we found all ganglio-series gangliosides (GM1, GD1a, GD1b, GT1b) to be decreased in regions (temporal and frontal cortex and nucleus basalis of Meynert) involved in pathogenesis of disease. In addition, in Alzheimer's disease we found simple gangliosides (GN2, GM3) to be elevated in the frontal and parietal cortex, which might correlate accelerated lysosomal degradation of gangliosides and/or astrogliosis occurring during neuronal death. 相似文献
7.
I Kracun H Rosner V Drnovsek Z Vukelic C Cosovic M Trbojevic-Cepe M Kubat 《Neurochemistry international》1992,20(3):421-431
In this study, brain gangliosides in prenatal and postnatal human life were analyzed. Immunohistochemically, the presence of "c"-pathway of gangliosides (GQ1c) in embryonic brain was only recorded at 5 weeks of gestation. Biochemical results indicated a twofold increase in human cortex ganglioside concentration between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except cerebellar cortex, which was characterized by increasing GT1b. In this developmental period, GD3 was found to be localized in the ventricular zone of the cortical wall. After birth, GD1b ganglioside in neuropil of granular cell layer corresponding to growing mossy fibers was expressed in cerebellar cortex. Between birth and 20/30 years of age, a cerebral neocortical difference of ganglioside composition was observed, characterized by lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In cerebellar cortex, GD1b and GT1b fractions decreased with aging. 相似文献
8.
9.
Alterations in trace element homeostasis could be involved in the pathology of dementia, and in particular of Alzheimer’s disease (AD). Zinc is a structural or functional component of many proteins, being involved in numerous and relevant physiological functions. Zinc homeostasis is affected in the elderly, and current evidence points to alterations in the cellular and systemic distribution of zinc in AD. Although the association of zinc and other metals with AD pathology remains unclear, therapeutic approaches designed to restore trace element homeostasis are being tested in clinical trials. Not only could zinc supplementation potentially benefit individuals with AD, but zinc supplementation also improves glycemic control in the elderly suffering from diabetes mellitus. However, the findings that select genetic polymorphisms may alter an individual’s zinc intake requirements should be taken into consideration when planning zinc supplementation. This review will focus on current knowledge regarding pathological and protective mechanisms involving brain zinc in AD to highlight areas where future research may enable development of new and improved therapies. 相似文献
10.
11.
Proteoglycans in the development, lesion, and aging of the brain 总被引:2,自引:0,他引:2
Oohira A 《Seikagaku. The Journal of Japanese Biochemical Society》2001,73(6):471-474
12.
Dietary calorie restriction,DNA-repair and brain aging 总被引:1,自引:0,他引:1
Rao KS 《Molecular and cellular biochemistry》2003,253(1-2):313-318
It is now well established, in many species, that dietary calorie restriction confers beneficial effects like slowing down many age dependent processes and extending the lifespan. There are indications that this phenomenon may be applicable even in non-human primates and humans. However the precise mechanism through which these effects are achieved is not known. Since decreasing DNA repair has been correlated with increasing age, information available on the effect of dietary calorie restriction on DNA repair potential in different species, including humans, is reviewed with special emphasis on brain in view of its uniqueness and the age related appearance of several neurodegenerative disorders. There is considerable evidence to indicate that calorie restriction reduces the rate of, among other things, the age dependent decrease in DNA repair potential thus leading to a better maintenance of genomic integrity. In brain also dietary calorie restriction is found to improve the activities of some enzymes supposedly involved in DNA repair. It is suggested that one of the lifespan extending mechanisms of calorie restriction may be to channel the limited energy resource available to maintain a process like DNA repair rather than towards reproductive and anabolic activities. 相似文献
13.
14.
Keller JN Dimayuga E Chen Q Thorpe J Gee J Ding Q 《The international journal of biochemistry & cell biology》2004,36(12):2376-2391
In order to successfully respond to stress all cells rely on the ability of the proteasomal and lysosomal proteolytic pathways to continually maintain protein turnover. Increasing evidence suggests that as part of normal aging there are age-related impairments in protein turnover by the proteasomal proteolytic pathway, and perturbations of the lysosomal proteolytic pathway. Furthermore, with numerous studies suggest an elevated level of a specialized form of lysosomal proteolysis (autophagy or macroautophagy) occurs during the aging of multiple cell types. Age-related alterations in proteolysis are believed to contribute to a wide variety of neuropathological manifestations including elevations in protein oxidation, protein aggregation, and cytotoxicity. Within the brain altered protein turnover is believed to contribute to elevations in multiple forms of protein aggregation ranging from tangle and Lewy body formation, to lipofuscin-ceroid accumulation. In this review we discuss and summarize evidence for proteolytic alterations occurring in the aging brain, the contribution of oxidative stress to disruption of protein turnover during normal aging, the evidence for cross-talk between the proteasome and lysosomal proteolytic pathways in the brain, and explore the contribution of altered proteolysis as a mediator of oxidative stress, neuropathology, and neurotoxicity in the aging brain. 相似文献
15.
Exercise and rat brain catecholamines 总被引:2,自引:0,他引:2
16.
Schulpis K Doulgeraki A Tsakiris S 《Zeitschrift für Naturforschung. C, Journal of biosciences》2001,56(11-12):921-929
The process of brain aging is an interaction of age-related losses and compensatory mechanisms. This review is focused on the changes of the synaptic number and structure, their functional implications, regarding neurotransmission, as well as the electrical activity of neuronal circuits. Moreover, the importance of calcium homeostasis is strongly emphasized. It is also suggested that many neuronal properties are preserved, as a result of adaptive mechanisms, and that a series of interdependent factors regulate brain aging. The "new frontier" in research is the challenge of understanding the effects of aging, both to prevent degenerative diseases and reduce their consequences. New aspects are considered a) the role of nitric oxide, b) free radicals and apoptosis, c) impaired cerebral microcirculation, d) metabolic features of aging brain, e) the possible neuroprotective role of insulin-like growth factor-1 (IGF-1) and ovarian steroids and e) stress and aging. These numerous multifactorial approaches are essential to understand the process of aging. The more we learn about it, the more we realize how to achieve "successful" aging. 相似文献
17.
Background
Menopause is associated with sharp declines in concentrations of circulating estrogens. This change in hormone milieu has the potential to affect brain functions relevant to dementia and cognitive aging.Scope of review
Focused review of published results of randomized clinical trials of estrogen-containing hormone therapy for Alzheimer's disease treatment and dementia prevention, observational research on cognition across the menopause transition, and observational research on the association of hormone therapy and Alzheimer's disease risk.Major conclusions
Clinical trial evidence supports conclusions that estrogen therapy does not improve dementia symptoms in women with Alzheimer's disease and that estrogen-containing hormone therapy initiated after about age 65 years increases dementia risk. Hormone therapy begun in this older postmenopausal group does not ameliorate cognitive aging. Cognitive outcomes of midlife hormone exposures are less well studied. There is no strong indication of short-term cognitive benefit of hormone use after natural menopause, but clinical trial data are sparse. Little research addresses midlife estrogen use after surgical menopause; limited clinical trial data imply short-term benefit of prompt initiation at the time of oophorectomy. Whether exogenous estrogen exposures in the early postmenopause affect Alzheimer risk or cognitive aging much later in life is unanswered by available data. Observational results raise the possibility of long-term cognitive benefit, but bias is a concern in interpreting these findings.General significance
Estrogen-containing hormone therapy should not be initiated after age 65 to prevent dementia or remediate cognitive aging. Further research is needed to understand short-term and long-term cognitive effects of estrogen exposures closer to the age of menopause. 相似文献18.
19.
Starnes JW Taylor RP Park Y 《American journal of physiology. Heart and circulatory physiology》2003,285(1):H347-H351
Exercise improves cardioprotection against ischemia-reperfusion in young animals but has not been investigated in older animals, which represent the population most likely to suffer an ischemic event. Therefore, we sought to determine the effects of aging on exercise-induced cardioprotection. Young, middle-aged, and old (4, 12, and 21 mo old) male Fischer 344 rats ran 60 min at 70-75% of maximum oxygen consumption. Twenty-four hours postexercise, isolated perfused working hearts underwent 22.5 min of global ischemia and then 30 min of recovery (reperfusion). Compared with sedentary rats (n = 8-9 rats/group), recovery of function (cardiac output x systolic pressure) improved after exercise (n = 9 rats/group) by 40% at 4 mo, 78% at 12 mo, and 59% at 21 mo. Exercise increased inducible heat shock protein 70 expression 105% at 4 mo but only 27% at 12 mo and 24% at 21 mo. Catalase activity progressively increased with age (P < 0.05) and was increased by exercise at 4 mo (26%) and 21 mo (19%). Manganese superoxide dismutase activity was increased by exercise only at 21 mo (45%). No exercise-related change in any antioxidant enzyme was observed at 12 mo. We conclude that exercise can enhance cardioprotection regardless of age, but the cardioprotective protein phenotype changes with age. 相似文献
20.
Michael L. Platt Robert M. Seyfarth Dorothy L. Cheney 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1687)
Studies of the factors affecting reproductive success in group-living monkeys have traditionally focused on competitive traits, like the acquisition of high dominance rank. Recent research, however, indicates that the ability to form cooperative social bonds has an equally strong effect on fitness. Two implications follow. First, strong social bonds make individuals'' fitness interdependent and the ‘free-rider’ problem disappears. Second, individuals must make adaptive choices that balance competition and cooperation—often with the same partners. The proximate mechanisms underlying these behaviours are only just beginning to be understood. Recent results from cognitive and systems neuroscience provide us some evidence that many social and non-social decisions are mediated ultimately by abstract, domain-general neural mechanisms. However, other populations of neurons in the orbitofrontal cortex, striatum, amygdala and parietal cortex specifically encode the type, importance and value of social information. Whether these specialized populations of neurons arise by selection or through developmental plasticity in response to the challenges of social life remains unknown. Many brain areas are homologous and show similar patterns of activity in human and non-human primates. In both groups, cortical activity is modulated by hormones like oxytocin and by the action of certain genes that may affect individual differences in behaviour. Taken together, results suggest that differences in cooperation between the two groups are a matter of degree rather than constituting a fundamental, qualitative distinction. 相似文献