首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Vinylglycine (L-VG) is both a substrate for and a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate (ACC) synthase. The ratio of the rate constants for catalytic conversion to alpha-ketobutyrate and ammonia to inactivation is 500/1. The crystal structure of the covalent adduct of the inactivated enzyme was determined at 2.25 Angstroms resolution. The active site contains an external aldimine of the adduct of L-VG with the pyridoxal 5'-phosphate cofactor. The side chain gamma-carbon of L-VG is covalently bound to the epsilon-amino group of Lys273. This species corresponds to one of the two alternatives proposed by Feng and Kirsch [Feng, L. and Kirsch, J.F. (2000) L-Vinylglycine is an alternative substrate as well as a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry 39, 2436-2444] and presumably results from Michael addition to a vinylglycine ketimine intermediate.  相似文献   

2.
Eliot AC  Kirsch JF 《Biochemistry》2002,41(11):3836-3842
The active sites of the homologous pyridoxal phosphate- (PLP-) dependent enzymes 1-aminocyclopropane-1-carboxylate (ACC) synthase and aspartate aminotransferase (AATase) are almost entirely conserved, yet the pK(a)'s of the two internal aldimines are 9.3 and 7.0, respectively, to complement the substrate pK(a)'s (S-adenosylmethionine pK(a) = 7.8 and aspartate pK(a) = 9.9). This complementation is required for maximum enzymatic activity in the physiological pH range. The most prominent structural difference in the active site is that Ile232 of ACC synthase is replaced by alanine in AATase. The I232A mutation was introduced into ACC synthase with a resulting 1.1 unit decrease (from 9.3 to 8.2) in the aldimine pK(a), thus identifying Ile232 as a major determinant of the high pK(a) of ACC synthase. The mutation also resulted in reduced k(cat) (0.5 vs 11 s(-1)) and k(cat)/K(m) values (5.0 x 10(4) vs 1.2 x 10(6) M(-1) s(-1)). The effect of the mutation is interpreted as the result of shortening of the Tyr233-PLP hydrogen bond. Addition of the Y233F mutation to the I232A ACC synthase to generate the double mutant I232A/Y233F raised the pK(a) from 8.2 to 8.8, because the Y233F mutation eliminates the hydrogen bond between that residue and PLP. The introduction of the retro mutation A224I into AATase raised the aldimine pK(a) of that enzyme from 6.96 to 7.16 and resulted in a decrease in single-turnover k(max) (108 vs 900 s(-1) for aspartate) and k(max)/K(m)(app) (7.5 x 10(4) vs 3.8 x 10(5) M(-1) s(-1)) values. The distance from the pyridine nitrogen of the cofactor to a conserved aspartate residue is 2.6 A in AATase and 3.8 A in ACC synthase. The D230E mutation introduced into ACC synthase to close this distance increases the aldimine pK(a) from 9.3 to 10.0, as would be predicted from a shortened hydrogen bond.  相似文献   

3.
Glutamate 47 is conserved in 1-aminocyclopropane-1-carboxylate (ACC) synthases and is positioned near the sulfonium pole of (S,S)-S-adenosyl-L-methionine (SAM) in the modeled pyridoxal phosphate quinonoid complex with SAM. E47Q and E47D constructs of ACC synthase were made to investigate a putative ionic interaction between Glu47 and SAM. The k(cat)/K(m) values for the conversion of (S,S)-SAM to ACC and methylthioadenosine (MTA) are depressed 630- and 25-fold for the E47Q and E47D enzymes, respectively. The decreases in the specificity constants are due to reductions in k(cat) for both mutant enzymes, and a 5-fold increase in K(m) for the E47Q enzyme. Importantly, much smaller effects were observed for the kinetic parameters of reactions with the alternate substrates L-vinylglycine (L-VG) (deamination to form alpha-ketobutyrate and ammonia) and L-alanine (transamination to form pyruvate), which have uncharged side chains. L-VG is both a substrate and a mechanism-based inactivator of the enzyme [Feng, L., and Kirsch, J. F. (2000) Biochemistry 39, 2436-2444], but the partition ratio, k(cat)/k(inact), is unaffected by the Glu47 mutations. ACC synthase primarily catalyzes the beta,gamma-elimination of MTA from the (R,S) diastereomer of SAM to produce L-VG [Satoh, S., and Yang, S. F. (1989) Arch.Biochem. Biophys. 271, 107-112], but catalyzes the formation of ACC to a lesser extent via alpha,gamma-elimination of MTA. The partition ratios for (alpha,gamma/beta,gamma)-elimination on (R,S)-SAM are 0.4, < or =0.014, and < or =0.08 for the wild-type, E47Q, and E47D enzymes, respectively. The results of these experiments strongly support a role for Glu47 as an anchor for the sulfonium pole of (S,S)-SAM, and consequently a role as an active site determinant of reaction specificity.  相似文献   

4.
The steady-state and pre-steady-state kinetic parameters for the interaction of E with the fluorogenic substrate 2-aminobenzoyl-Thr-Ile-Nle-Phe(p-NO(2))-Gln-Arg-NH(2) were determined in 1.25 M NaCl, 0.1 M MES-TRIS at pH 6.0 at 25 degrees C. At low concentrations of enzyme, the values of the K(m) and k(cat) calculated from steady-state data were 2.1 microM and 7.4 s(-1), respectively. At high concentrations of enzyme, the time-courses of fluorescence enhancement associated with catalysis were very dependent on the excitation wavelength used to monitor the reaction. Because the absorbance spectrum of the substrate overlapped the fluorescence emission spectrum of the enzyme, these abnormalities were attributed to fluorescence energy transfer between the enzyme and the substrate in an enzyme-substrate intermediate. The kinetic data collected with lambda(ex) = 280 nm and lambda(em) > 435 nm were analyzed according to the following mechanism in which EX was the species with enhanced fluorescence relative to substrate or products: [formula see text]. The values of the kinetic parameters with (1)H(2)O as the solvent were K = 13 microM, k(2) = 150 s(-1), k(-2) = 25 s(-1), and k(3) = 11 s(-1). The values of the kinetic parameters with (2)H(2)O as the solvent were K = 13 microM, k(2) = 210 s(-1), k(-2) = 12 s(-1), and k(3) = 4.4 s(-1). These values yielded solvent isotope effects of 2 on k(cat) and 0.9 on k(cat)/K(m). From analysis of the complete time-course of the fluorescence change (lambda(ex) = 280 nm and lambda(em) > 435 nm) during the course of substrate hydrolysis, the intermediate EX was determined to be 6.3-fold more fluorescent than the product, which, in turn, was 4.5-fold more fluorescent than ES or S. Rapid quench experiments with 2 N HCl as the quenching reagent confirmed that EX was a complex between enzyme and substrate. Consequently, the small burst in fluorescence observed when monitoring with lambda(ex) = 340 nm (0.3 product equiv per enzyme equivalent) was attributed to the fluorescence change upon transfer of substrate from an aqueous environment to a nonaqueous environment in the enzyme. These results were consistent with carbon-nitrogen bond cleavage being the major contributor to k(cat).  相似文献   

5.
We report an analysis of the reaction mechanism of ornithine 4,5-aminomutase, an adenosylcobalamin (AdoCbl)- and pyridoxal L-phosphate (PLP)-dependent enzyme that catalyzes the 1,2-rearrangement of the terminal amino group of D-ornithine to generate (2R,4S)-2,4-diaminopentanoic acid. We show by stopped-flow absorbance studies that binding of the substrate D-ornithine or the substrate analogue D-2,4-diaminobutryic acid (DAB) induces rapid homolysis of the AdoCbl Co-C bond (781 s(-1), D-ornithine; 513 s(-1), DAB). However, only DAB results in the stable formation of a cob(II)alamin species. EPR spectra of DAB and [2,4,4-(2)H(3)]DAB bound to holo-ornithine 4,5-aminomutase suggests strong electronic coupling between cob(II)alamin and a radical form of the substrate analog. Loading of substrate/analogue onto PLP (i.e. formation of an external aldimine) is also rapid (532 s(-1), D-ornithine; 488 s(-1), DAB). In AdoCbl-depleted enzyme, formation of the external aldimine occurs over long time scales (approximately 50 s) and occurs in three resolvable kinetic phases, identifying four distinct spectral intermediates (termed A-D). We infer that these represent the internal aldimine (lambda(max) 416 nm; A), two different unliganded PLP states of the enzyme (lambda(max) at 409 nm; B and C), and the external aldimine (lambda(max) 426 nm; D). An imine linkage with d-ornithine and DAB generates both tautomeric forms of the external aldimine, but with D-ornithine the equilibrium is shifted toward the ketoimine state. The influence of this equilibrium distribution of prototropic isomers in driving homolysis and stabilizing radical intermediate states is discussed. Our work provides the first detailed analysis of radical-based catalysis in this Class III AdoCbl-dependent enzyme.  相似文献   

6.
M Roy  E W Miles  R S Phillips  M F Dunn 《Biochemistry》1988,27(23):8661-8669
The reactions of 2,3-dihydro-L-tryptophan (DHT) and oxindolyl-L-alanine (OXA) with tryptophan synthase have been investigated by rapid-scanning stopped-flow (RSSF) spectroscopy and by the concentration dependence of rates measured by single-wavelength stopped-flow (SWSF) spectroscopy. The RSSF spectral changes for DHT and OXA show the disappearance of the internal aldimine (lambda max 412 nm), the formation and decay of intermediates absorbing less than or equal to 340 nm, and the appearance of the quinonoid (lambda max 492 and 480 nm, respectively). Rate constants determined by SWSF were either well resolved (i.e., k1[DHT], k-1 greater than k2, k-2 greater than k3, k-3) or indicative of a tightly coupled system (i.e., k1[OXA], k-1 greater than or equal to k2, k-2 greater than k3, k-3). The RSSF spectral changes and SWSF kinetic studies together with computer simulations of the kinetic time courses are consistent with a mechanism that includes formation of a bleached species. Detection of these shorter wavelength species in the reactions of OXA and DHT indicates that substrate analogues with tetrahedral geometry at C-3 induce new protein-substrate interactions that result in the accumulation of species not previously detected in the tryptophan synthase system. The bleached species with lambda max less than or equal to 340 nm are proposed as the gem-diamine intermediates.  相似文献   

7.
W F Drewe  M F Dunn 《Biochemistry》1985,24(15):3977-3987
Rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy has been used to investigate the UV-visible absorption changes (300-550 nm) that occur in the spectrum of enzyme-bound pyridoxal 5'-phosphate during the reaction of L-serine with the alpha 2 beta 2 and beta 2 forms of Escherichia coli tryptophan synthase. In agreement with previous kinetic studies [Lane, A., & Kirschner, K. (1983) Eur. J. Biochem. 129, 561-570], the reaction with alpha 2 beta 2 was found to occur in three detectable relaxations (1/tau 1 greater than 1/tau 2 greater than 1/tau 3). The RSSF data reveal that during tau 1, the internal aldimine, E(PLP), with lambda max = 412 nm (pH 7.8), undergoes rapid conversion to two transient species, one with lambda max congruent to 420 nm and one with lambda max congruent to 460 nm. These species decay in a biphasic process (1/tau 2, 1/tau 3) to a complicated final spectrum with lambda max congruent to 350 nm and with a broad envelope of absorbance extending out to approximately 525 nm. Analysis of the time-resolved spectra establishes that the spectral changes in tau 2 are nearly identical with the spectral changes in tau 3. Kinetic isotope effects due to substitution of 2H for the alpha-1H of serine were found to increase the amount of the 420-nm transient and to decrease the amount of the species with lambda max congruent to 460 nm. These findings identify the serine Schiff base (the external aldimine) as the 420 nm absorbing, highly fluorescent transient; the species with lambda max congruent to 460 nm is the delocalized carbanion (quinoidal) species derived from abstraction of the alpha proton from the external aldimine. The reaction of L-serine with beta 2 consists of two relaxations (1/tau 1 beta greater than 1/tau 2 beta) and yields a quasi-stable species with lambda max = 420 nm, in good agreement with a previous report [Miles, E. W., Hatanaka, M., & Crawford, I. P. (1968) Biochemistry 7, 2742-2753]. Analysis of the RSSF spectra indicates that the same spectral change occurs in each phase of the reaction. The similarity of the spectral changes that occur in tau 2 and tau 3 of the alpha 2 beta 2 reaction is postulated to originate from the existence of two (slowly) interconverting forms of the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
1-Aminocyclopropane-1-carboxylate (ACC) synthase, which catalyzes the conversion of S-adenosyl-L-methionine (AdoMet) to ACC, is irreversibly inactivated by its substrate AdoMet. AdoMet has two diastereomers with respect to its sulfonium center, (-)-AdoMet and (+)-AdoMet. We prepared (+)- and (-)-AdoMet from a commercial source, and compared their activities as a substrate and as an inactivator of ACC synthase isolated from tomato (Lycopersicon esculentum Mill). fruits. Only (-)-AdoMet produced ACC, whereas both (-)- and (+)-AdoMet inactivated ACC synthase; (+)-AdoMet inactivated the enzyme three times faster than (-)-AdoMet. We have previously shown that ACC synthase was specifically radiolabeled when the enzyme was incubated with S-adenosyl-L-[3,4-14C]methionine. The present results further indicate that S-adenosyl-L-[carboxyl-14C]methionine, but not S-adenosyl-L-[methyl-14C]methionine, radiolabeled the enzyme. These data suggest that the 2-aminobutyric acid portion of AdoMet is linked to ACC synthase during the autoinactivation process. A possible mechanism for ACC synthase inactivation by AdoMet is discussed.  相似文献   

9.
Biotin is an essential enzyme cofactor required for carboxylation and transcarboxylation reactions. The absence of the biotin biosynthesis pathway in humans suggests that it can be an attractive target for the development of novel drugs against a number of pathogens. 7-Keto-8-aminopelargonic acid (KAPA) synthase (EC 2.3.1.47), the enzyme catalyzing the first committed step in the biotin biosynthesis pathway, is believed to exhibit high substrate stereospecificity. A comparative kinetic characterization of the interaction of the mycobacterium tuberculosis KAPA synthase with both L- AND D-alanine was carried out to investigate the basis of the substrate stereospecificity exhibited by the enzyme. The formation of the external aldimine with D-alanine (k = 82.63 m(-1) s(-1)) is approximately 5 times slower than that with L-alanine (k = 399.4 m(-1) s(-1)). In addition to formation of the external aldimine, formation of substrate quinonoid was also observed upon addition of pimeloyl-CoA to the preformed d-alanine external aldimine complex. However, the formation of this intermediate was extremely slow compared with the substrate quinonoid with L-alanine and pimeloyl-CoA (k = 16.9 x 10(4) m(-1) s(-1)). Contrary to earlier reports, these results clearly show that D-alanine is not a competitive inhibitor but a substrate for the enzyme and thereby demonstrate the broad substrate stereospecificity of the M. tuberculosis KAPA synthase. Further, d-KAPA, the product of the reaction utilizing D-alanine inhibits both KAPA synthase (Ki = 114.83 microm) as well as 7,8-diaminopelargonic acid synthase (IC50 = 43.9 microm), the next enzyme of the pathway.  相似文献   

10.
Thibodeaux CJ  Liu HW 《Biochemistry》2011,50(11):1950-1962
1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.  相似文献   

11.
Hur O  Niks D  Casino P  Dunn MF 《Biochemistry》2002,41(31):9991-10001
Reactions catalyzed by the beta-subunits of the tryptophan synthase alpha(2)beta(2) complex involve multiple covalent transformations facilitated by proton transfers between the coenzyme, the reacting substrates, and acid-base catalytic groups of the enzyme. However, the UV/Vis absorbance spectra of covalent intermediates formed between the pyridoxal 5'-phosphate coenzyme (PLP) and the reacting substrate are remarkably pH-independent. Furthermore, the alpha-aminoacrylate Schiff base intermediate, E(A-A), formed between L-Ser and enzyme-bound PLP has an unusual spectrum with lambda(max) = 350 nm and a shoulder extending to greater than 500 nm. Other PLP enzymes that form E(A-A) species exhibit intense bands with lambda(max) approximately 460-470 nm. To further investigate this unusual tryptophan synthase E(A-A) species, these studies examine the kinetics of H(+) release in the reaction of L-Ser with the enzyme using rapid kinetics and the H(+) indicator phenol red in solutions weakly buffered by substrate L-serine. This work establishes that the reaction of L-Ser with tryptophan synthase gives an H(+) release when the external aldimine of L-Ser, E(Aex(1)), is converted to E(A-A). This same H(+) release occurs in the reaction of L-Ser plus the indole analogue, aniline, in a step that is rate-determining for the appearance of E(Q)(Aniline). We propose that the kinetic and spectroscopic properties of the L-Ser reaction with tryptophan synthase reflect a mechanism wherein the kinetically detected proton release arises from conversion of an E(Aex(1)) species protonated at the Schiff base nitrogen to an E(A-A) species with a neutral Schiff base nitrogen. The mechanistic and conformational implications of this transformation are discussed.  相似文献   

12.
Diaminopropionate ammonia-lyase gene from Escherichia coli and Salmonella typhimurium was cloned and the overexpressed enzymes were purified to homogeneity. The k(cat) values, determined for the recombinant enzymes with DL-DAP, D-serine, and L-serine as substrates, showed that the enzyme from S. typhimurium was more active than that from E. coli and the K(m) values were found to be similar. The purified enzymes had an absorption maximum (lambda(max)) at 412 nm, typical of PLP dependent enzymes. A red shift in lambda(max) was observed immediately after the addition of 10mM DL-DAP, which returned to the original lambda(max) of 412 nm in about 4 min. This red shift might reflect the formation of an external aldimine and/or other transient intermediates of the reaction. The apoenzyme of E. coli and S. typhimurium prepared by treatment with L-cysteine could be partially (60%) reconstituted by the addition of PLP. The holo, apo, and the reconstituted enzymes were shown to be present as homo dimers by size exclusion chromatography.  相似文献   

13.
Zhou H  Wang HW  Zhu K  Sui SF  Xu P  Yang SF  Li N 《Plant physiology》1999,121(3):913-919
A pyridoxal 5'-phosphate (PLP)-dependent enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (S-adenosyl-L-Met methylthioadenosine-lyase, EC 4.4.1.14), catalyzes the conversion of S-adenosyl-L-methionine (AdoMet) to ACC. A tomato ACC synthase isozyme (LE-ACS2) with a deletion of 46 amino acids at the C terminus was chosen as the control enzyme for the study of the function of R286 in ACC synthase. R286 of the tomato ACC synthase was mutated to a leucine via site-directed mutagenesis. The ACC synthase mutant R286L was purified using a simplified two-step purification protocol. Circular dichroism (CD) analysis indicated that the overall three-dimensional structure of the mutant was indistinguishable from that of the control enzyme. Fluorescence spectroscopy revealed that the binding affinity of R286L ACC synthase for its cofactor PLP was reduced 20- to 25-fold compared with control. Kinetic analysis of R286L showed that this mutant ACC synthase had a significantly reduced turnover number (k(cat)) of 8.2 x 10(-3) s(-1) and an increased K(m) of 730 microM for AdoMet, leading to an 8,000-fold decrease in overall catalytic efficiency compared with the control enzyme. Thus, R286 of tomato ACC synthase is involved in binding both PLP and AdoMet.  相似文献   

14.
Gawandi VB  Liskey D  Lima S  Phillips RS 《Biochemistry》2004,43(11):3230-3237
Beta-benzoyl-DL-alanine was synthesized from alpha-bromoacetophenone and diethyl acetamidomalonate. The racemic amino acid was resolved by carboxypeptidase A-catalyzed hydrolysis of the N-trifluoroacetyl derivative. Beta-benzoyl-L-alanine is a good substrate of kynureninase from Pseudomonas fluorescens, with k(cat) and k(cat)/K(m) values of 0.7 s(-1) and 8.0 x 10(4) M(-1) s(-1), respectively, compared to k(cat) = 16.0 s(-1) and k(cat)/K(m) = 6.0 x 10(5) M(-1) s(-1) for L-kynurenine. In contrast to the reaction of L-kynurenine, beta-benzoyl-L-alanine does not exhibit a significant solvent isotope effect on k(cat) ((H)k/(D)k = 0.96 +/- 0.06). The pre-steady-state kinetics of the reaction of beta-benzoyl-L-alanine were investigated by rapid scanning stopped-flow spectrophotometry. The spectra show the formation of a quinonoid intermediate, with lambda(max) = 490 nm, in the dead time of the instrument, which then decays, with k = 210 s(-1), to form a transient intermediate with lambda(max) at 348 nm. In the presence of benzaldehyde, the 348 nm intermediate decays, with k = 0.7 s(-1), to form a quasistable quinonoid species with lambda(max) = 492 nm. Previous studies demonstrated that benzaldehyde can trap an enamine intermediate formed after the C(beta)-C(gamma) bond cleavage [Phillips, R. S., Sundararaju, B., and Koushik, S. V. (1998) Biochemistry 37, 8783-8789]. Thus, the 348 nm intermediate is kinetically competent. The position of the absorption maximum and shape of the band is consistent with a PMP-ketimine intermediate. The results from chemical quenching analysis do not show a burst of benzoate and, thus, also support the formation of benzoate as the rate-determining step. These data suggest that, in contrast to L-kynurenine, for which the rate-determining step was shown to be deprotonation of the pyruvate-ketimine intermediate [Koushik, S. V., Moore, J. A., III, Sundararaju, B., and Phillips, R. S. (1998) Biochemistry 37, 1376-1382], the rate-determining step in the reaction of beta-benzoyl-L-alanine with kynureninase is C(beta)-C(gamma) bond cleavage.  相似文献   

15.
ACC synthase, isolated from mung bean hypocotyl segments treatedwith IAA and BA, was inactivated by its substrate, SAM, duringits catalytic action. The reaction products, ACC and MTA, hadno effect on ACC synthase activity. The half-life of the enzymewas 12 min with an initial concentration of 150µM SAM,but this was extended to 23.5 min when the SAM concentrationwas reduced to 40 µM, near to the endogenous concentrationof SAM in mung bean hypocotyl tissue. Addition of AVG, a competitiveinhibitor of ACC synthase, to the reaction mixture containing40 µM SAM, prevented ACC synthase inactivation and increasedthe half-life about 2-fold. We suggest that ACC synthase inactivationis caused by SAM acting as an enzyme-activated irreversibleinactivator (kcat-type inactivator), besides being the substratefor the enzyme. This SAM-dependent inactivation of ACC synthasemay explain the rapid inactivation of the enzyme in intact mungbean hypocotyl segments previously found by Yoshii and Imaseki(1982). (Received October 15, 1985; Accepted December 6, 1985)  相似文献   

16.
The 2.4 A crystal structure of the vitamin B6-dependent enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase is described. This enzyme catalyses the committed step in the biosynthesis of ethylene, a plant hormone that is responsible for the initiation of fruit ripening and for regulating many other developmental processes. ACC synthase has 15 % sequence identity with the well-studied aspartate aminotransferase, and a completely different catalytic activity yet the overall folds and the active sites are very similar. The new structure together with available biochemical data enables a comparative mechanistic analysis that largely explains the catalytic roles of the conserved and non-conserved active site residues. An external aldimine reaction intermediate (external aldimine with ACC, i.e. with the product) has been modeled. The new structure provides a basis for the rational design of inhibitors with broad agricultural applications.  相似文献   

17.
Horsman GP  Ke J  Dai S  Seah SY  Bolin JT  Eltis LD 《Biochemistry》2006,45(37):11071-11086
Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphD(LB400)) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 degrees C showed that the enzyme rapidly (1/tau(1) approximately 500 s(-1)) transforms HOPDA (lambda(max) = 434 nm) into a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/tau(2) = 54 s(-1), 1/tau(3) = 6 s(-1) approximately k(cat)) with simultaneous biphasic appearance (48 and 8 s(-1)) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/tau(1) and 1/tau(2) but affected neither 1/tau(3) nor k(cat), suggesting that 1/tau(2) may reflect diffusive HPD dissociation, and 1/tau(3) represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and, therefore, postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (lambda(max) = 492 nm). The crystal structures of the wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 A resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate.  相似文献   

18.
Satoh S  Yang SF 《Plant physiology》1989,91(3):1036-1039
The pyridoxal phosphate-dependent 1-aminocyclopropane-1-carboxylate (ACC) synthase catalyzes the conversion of S-adenosyl-l-methionine (AdoMet) to ACC, and is inactivated by AdoMet during the reaction. l-Vinylglycine was found to be a competitive inhibitor of the enzyme, and to cause a time-dependent inactivation of the enzyme. The inactivation required the presence of pyridoxal phosphate and followed pseudo-first-order kinetics at various concentrations of l-vinylglycine. The Michaelis constant for l-vinylglycine in the inactivation reaction (Kinact) was 3.3 millimolar and the maximum rate constant (kmax) was 0.1 per minute. These findings, coupled with the previous observations that the suicidal action of AdoMet involved a covalent linkage of the aminobutyrate portion of AdoMet to the enzyme, support the view that the mechanism-based inactivation of ACC synthase by the substrate AdoMet proceeds through the formation of a vinylglycine-ACC synthase complex as an intermediate.  相似文献   

19.
Kim WT  Yang SF 《Plant physiology》1992,100(3):1126-1131
Ethylene production in plant tissues declines rapidly following induction, and this decline is due to a rapid decrease in the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme in ethylene biosynthesis. To study the nature of the rapid turnover of ACC synthase in vivo, proteins in wounded ripening tomato (Lycopersicon esculentum) fruit discs were radiolabeled with [35S]methionine, followed by a chase with nonradioactive methionine. Periodically, the radioactive ACC synthase was isolated with an immunoaffinity gel and analyzed. ACC synthase protein decayed rapidly in vivo with an apparent half-life of about 58 min. This value for protein turnover in vivo is similar to that previously reported for activity half-life in vivo and substrate-dependent enzyme inactivation in vitro. Carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol, potent uncouplers of oxidative phosphorylation, strongly inhibited the rapid decay of ACC synthase protein in the tissue. Degradation of this enzyme protein was moderately inhibited by the administration of aminooxyacetic acid, a competitive inhibitor of ACC synthase with respect to its substrate S-adenosyl-l-methionine, α,α′-dipyridyl, and phenylmethanesulfonyl fluoride or leupeptin, serine protease inhibitors. These results support the notion that the substrate S-adenosyl-l-methionine participates in the rapid inactivation of the enzyme in vivo and suggest that some ATP-dependent processes, such as the ubiquitin-requiring pathway, are involved in the degradation of ACC synthase proteins.  相似文献   

20.
The active site residue lysine 258 of chicken mitochondrial aspartate aminotransferase was replaced with a histidine residue by means of site-directed mutagenesis. The mutant protein was expressed in Escherichia coli and purified to homogeneity. Addition of 2-oxoglutarate to its pyridoxamine form changed the coenzyme absorption spectrum (lambda max = 330 nm) to that of the pyridoxal form (lambda max = 330/392 nm). The rate of this half-reaction of transamination (kcat = 4.0 x 10(-4)s-1) is five orders of magnitude slower than that of the wild-type enzyme. However, the reverse half-reaction, initiated by addition of aspartate or glutamate to the pyridoxal form of the mutant enzyme, is only three orders of magnitude slower than that of the wild-type enzyme, kmax of the observable rate-limiting elementary step, i.e. the conversion of the external aldimine to the pyridoxamine form, being 7.0 x 10(-2)s-1. Aspartate aminotransferase (Lys258----His) thus represents a pyridoxal-5'-phosphate-dependent enzyme with significant catalytic competence without an active site lysine residue. Apparently, covalent binding of the coenzyme, i.e. the internal aldimine linkage, is not essential for the enzymic transamination reaction, and a histidine residue can to some extent substitute for lysine 258 which is assumed to act as proton donor/acceptor in the aldimine-ketimine tautomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号