首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
We recently described a protocol for Eucalyptus globulus somatic embryogenesis (SE). For its immediate use at industrial levels, some stages of the process require better control. In particular, SE germination rates are variable, decreasing SE efficacy. As reserves may play a central role in embryogenic processes, we followed histocytological changes and reserve fluctuations, during SE. For SE induction, explants of mature zygotic embryos were grown on Murashige and Skoog (MS) medium with 3 mg l−1 α-naphthalene acetic acid and later transferred to MS without growth regulators (MSWH). Samples of zygotic embryo cotyledons (explants), of globular and dicotyledonar somatic embryos, and of embling leaves were analysed for reserve accumulation and histocytological profiles. Cotyledon cells of zygotic embryos were rich in lipid and protein bodies, having almost no starch. After 3 weeks of induction, starch grain density increased in differentiated mesophyll regions, while in meristematic regions their occurrence was diffuse. In globular somatic embryos, starch accumulation increased with time (in amyloplasts), but protein bodies were absent. Cotyledonary somatic embryos had lower density of starch grains and absence of lipid and protein bodies. Embling leaves showed typical histological organisation. This is the first comprehensive study on histological and cytological changes during Eucalyptus SE with emphasis in reserve accumulation. With this work we demonstrate that the presently available SE protocol for E. globulus leads to reserve fluctuations during the process. Moreover, the reserves of somatic embryo cotyledons differ from those of their zygotic embryo counterparts, which reinforce the importance of reserves in the embryogenic process and suggests that manipulating external conditions, SE may be optimised giving suitable emblings production for industrial purposes.  相似文献   

2.
Organogenic cultures were induced from zygotic embryo and megagametophyte explants of the Central American cycad species, Dioon edule. Plant growth medium consisted of B5 major salts, Murashige and Skoog minor salts and organics, 400 mg l−1 glutamine, 100 mg l−1 arginine, 100 mg l−1 asparagine, 60 g l−1 sucrose, 8 g l−1 Difco Bacto agar and was supplemented with kinetin (0 – 13.94 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (0 – 9.05 μM) arranged as a 5×4 factorial in a randomized block design. Callus initiation occurred on a wide range of medium formulations from megagametophyte explants; however, shoot formation occurred only on medium supplemented with 2.26 μM 2,4-D. In comparison, callus initiation from explanted zygotic embryos occurred on fewer medium formulations, and adventitious shoot induction occurred from callus on formulations with 9.29–13.94 μM kinetin + 0.45–9.05 μM 2,4-D. Rooted shoots, derived from megagametophyte and zygotic embryo cultures, have been regenerated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody α (H-300) raised against the human α1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 μmol gFM−1 h−1) than in those of L. vulgaris (31.8 ± 3.3 μmol gFM−1 h−1). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 μmolATP gFM−1 h−1, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.  相似文献   

4.
Tomato plants were cultivated (from 2 to 23 days after germination) in media with NO 3 , NH 4 + , or a mixture of both forms in different proportions used as the N source given with or without 5 mol dm−3 HCO 3 . The accumulation of soluble sugars (reducing sugars and sucrose) and free amino acids was higher in the roots and leaves of NH 4 + -fed plants than in NO 3 -fed plants. Starch accumulation in NH 4 + -fed plants was higher in leaves (about 28%) and lower in roots (about 37%) in comparison with that of NO 3 -fed plants. Plants cultivated in media containing a mixture of NO 3 /NH 4 + were characterized by a lower content of sugars and amino acids accumulation in comparison with that in plants fed with NO 3 or NH 4 + . An elevated HCO 3 concentration in the rhizosphere stimulated the accumulation of soluble sugars and free amino acids in all the experimental variants. There were only small differences in the starch content.  相似文献   

5.
A liquid paraffin overlay (LPO) was used for storage of rapidly multiplying somatic embryos of Dendrocalamus hamiltonii under slow-growth conditions. Slow growth was associated with changes in sugar metabolism. In rapidly growing embryogenic tissues, a sharp decline in starch and non-reducing sugars indicated rapid utilization of starch. In contrast, under slow-growth conditions in somatic embryos stored under LPO, a gradual decline in starch indicated its slower utilization. As a result, growth of somatic embryos under LPO was suppressed and subculturing was not required. Following retrieval from growth under LPO after 30, 90, 180, 270, and 365 d of storage, the somatic embryos showed high recovery and germination (79.78%, 77.49%, 71.22%, 67.13%, and 59.99%, respectively) and were able to proliferate following transfer to Murashige and Skoog’s (Physiol. Plant. 15:473–497, 1962) medium containing 1 mgl−1 BAP and 2% sucrose. The study provides useful information on in vitro storage of embryogenic tissue of D. hamiltonii.  相似文献   

6.
As starch is the main seed reserve material in both species of Araucaria of South America, A. araucana and A. angustifolia, it is important to understand starch breakdown in both embryo and megagametophyte tissues of Araucaria seeds. Sugar analysis by thin layer chromatography indicates that sucrose is the main sugar produced in both tissues. Enzyme reactions coupled to benzidine oxidation indicate that sucrose is the main sugar moved from the megagametophyte to the growing regions of the embryo via the cotyledons.

Phosphorylase was detected in both embryo and megagametophyte tissues by the formation of [32P]glucose-1-P and by formation of [14C] amylopectin from [14C]glucose-1-P. The enzyme activity increases 5-fold in both embryo and gametophyte to a peak 18 hours after the start of imbibition. Debranching enzyme, α-glucosidase, and hexokinase are also present in both embryonic and megagametophytic tissues.

Branched glucan oligosaccharides accumulate during this time, reaching a maximum 40 hours after imbibition starts, and decline after germination occurs.

The pattern of activity of the enzymes studied in this work suggests that starch degradation is initiated by α-amylase and phosphorylase in the embryo and by phosphorylase mainly in the megagametophyte. Sucrose-P synthase seems to be the enzyme responsible for sucrose synthesis in both tissues.

  相似文献   

7.
Biochemical changes that characterize megagametophyte and zygotic embryo development in the conifer Cupressus sempervirens L. (Cupressaceae) were studied by complementary methods of cytochemistry and two-dimensional electrophoresis (2-DE). These analyses revealed that early in their development megagametophytes and embryos were characterized by the predominant elaboration of starch in association with a low protein content. As their development proceeded, starch content gradually decreased while protein body synthesis progressively intensified, both in the megagametophyte and the embryo. In parallel, an increase in protein level as well as an accumulation of specific polypeptides could be observed in the two tissues. During maturation, protein bodies accumulated to high levels both in megagametophyte and embryo cells, whereas starch could no longer be detected. Protein levels were high in mature seeds and reached 12% and 8% of the megagametophyte and embryo DW, respectively. Some sets of polypeptides accumulated more specifically at this time in both megagametophyte and embryo. Some of these began to first accumulate in the megagametophyte during embryo development before their concentration rose in the embryo at cotyledonary stage. Others displayed a more specific-embryo accumulation pattern.  相似文献   

8.
In the horticulturally important ornamental species Cyclamen persicum Mill., somatic embryogenesis is an efficient vegetative propagation method and the development of artificial seeds is an ultimate aim. This study aims at a systematic comparison of the proteomes of zygotic embryos, somatic embryos grown in liquid medium containing 30 or 60 g l−1 sucrose, germinating embryos of both types and endosperm in order to obtain novel insights into seed and germination physiology. Using high resolution two-dimensional isoelectric focussing/sodium dodecylsulfate polyacrylamide gel electrophoresis (2D IEF/SDS PAGE), 74% of the proteins expressed in zygotic embryos were found in similar abundance in somatic embryos grown in 60 g l−1 sucrose. Somatic embryos grown in 30 g l−1 sucrose accumulated fewer protein species than those grown in 60 g l−1. Selected proteins were identified following mass spectrometry (nano-LC-MS/MS). Four enzymes involved in glycolysis (UDP-glucose pyrophosphorylase, fructose bisphosphate aldolase, triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase GAPDH) were specifically induced in somatic embryos. 11S globulin proteins identified by MS were present in high levels in somatic embryos, zygotic embryos and endosperm, whereas 7S globulins were detected mainly in endosperm and zygotic embryos. These are the first storage proteins identified in C. persicum. Xyloglucans are known to be another group of seed storage compounds in C. persicum. Interestingly, xyloglucan endotransglycosylases were found to be highly expressed in endosperm tissue. We discuss the physiological implications of these observations.  相似文献   

9.
Calli of salt tolerant (Bhoora rata) and salt susceptible (GR11) rice varieties were cultured on Linsmaeir and Skoog’s medium containing LD50 concentration of NaCl (200 mM) and hydroxyproline (10 mM). Growth rate of callus and Na+, K+, Cl, Mg+2, and Ca+2 contents of the cultured rice tissues were determined at the end of 0, 2, 4 and 6 weeks of incubation. Hydroxyproline resistant calli of both rice varieties when cultured on Linsmaeir and Skoog’s medium containing both NaCl and hydroxyproline showed increased dry weight and enhanced intracellular levels of K+, Mg+2 and Ca+2. The accumulation of Na+ and Cl ions was less in the hydroxyproline resistant calli.  相似文献   

10.
Summary An anatomical study was carried out during the sequences of events which lead to the differentiation of secondary embryos ofCamellia reticulata cv ‘Mouchang’. Secondary embryogenesis can be induced by culturing somatic embryos on a modified Murashige and Skoog medium supplemented with 0.5 mg·liter−1 6-benzylaminopurine and 0.1 mg·liter−1 indole-3-butyric acid. After about 12 days of culture, globular-shaped secondary embryos became apparent, and by 18 to 20 days of culture cotyledonary stages were formed. Embryos developed mainly on the hypocotyl of primary embryos without an intermediate callus. Histologic monitoring revealed that secondary embryos apparently had a multicellular origin from embryogenic areas originating in both epidermal and subepidermal layers of the hypocotyl region. This morphogenetic competence is related to the presence, at the time of culture, of relatively undifferentiated cells in superfical layers of the primary embryo hypocotyl. Microcomputer image analysis was applied for quantifying cytological events associated with somatic embryogenesis. This method showed an increasing gradient in the nucleus-to-cell area ratio from differentiated cells passing through preembryogenic cells to embryogenic cells. The formation of embryogenic areas was preceded by accumulation of starch in the surrounding cortical cells. The cells underlying globular secondary embryos still contained abundant starch, but it declined as the secondary embryos developed.  相似文献   

11.
The effects of different growth conditions (ventilated and closed vessels, medium with 0, 15 and 30 g dm−3 sucrose) during proliferation of donor quince (Cydonia oblonga Mill.) shoots (stage I) on net photosynthetic rate and soluble sugars content were evaluated. In order to assess the influence of these physiological parameters on morphogenesis, leaf explants harvested from donor shoots were induced to form somatic embryos and adventitious roots under ventilated and closed Petri dishes (stage II). Natural ventilation and low sucrose contents (0–15 g dm−3) promoted the photosynthetic rate of quince shoots whereas biomass accumulation was the highest in those shoots cultured with 30 g dm−3 sucrose in both vessel types and 15 g dm−3 sucrose under natural ventilation. Increasing sucrose content in the medium induced greater accumulation of sucrose in leaf tissues of donor shoots. The content of reducing sugars was higher than that of sucrose, and it appeared to be higher in shoots cultured under natural ventilation compared to those in closed vessels. Somatic embryogenesis and root regeneration were influenced by stage I and II treatments. A significant correlation between sucrose content in the leaves of donor shoots and the number of somatic embryos regenerated was found, suggesting that identification of biochemical and physiological characteristics of donor shoots associated with increased regeneration ability might be helpful for improving morphogenesis in plant tissue culture.  相似文献   

12.
The embryogenic calli (EC) were obtained from hypocotyl explants of groundnut (Arachis hypogaea L.) cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 0.5 mg dm−3 6-benzylaminopurine (BAP). The EC were exposed to γ-radiation (10–50 Gy) or treated with 1–5 mM of ethyl methane sulphonate (EMS) or sodium azide (SA). The mutated EC were subcultured on embryo induction medium containing 20 mg dm−3 2,4-D. Somatic embryos (SE) developed from these calli were transferred to MS medium supplemented with BAP (2.0 mg dm−3) and 0.5 mg dm−3 2,4-D for maturation. The well-developed embryos were cultured on germination medium consisting of MS salts with 2.0 mg dm−3 BAP and 0.25 mg dm−3 naphthaleneacetic acid (NAA). Well-developed plantlets were transferred for hardening and hardened plants produced normal flowers and set viable seeds. The fresh mass of the EC, mean number of SE per explant and regeneration percentage were higher at lower concentrations of mutagens (up to 30 Gy/3 mM). Some abnormalities in regenerated plants were observed, especially variations in leaf shape.  相似文献   

13.
Yuncai Hu  Urs Schmidhalter 《Planta》1998,204(2):212-219
Wheat leaf growth is known to be spatially affected by salinity. The altered spatial distribution of leaf growth under saline conditions may be associated with spatial changes in tissue mineral elements. The objective of this study was to evaluate the spatial distributions of mineral elements and their net deposition rates in the elongating and mature zones of leaf 4 of the main stem of spring wheat (Triticum aestivum L. cv. Lona) during its linear growth phase under saline soil conditions. Plants were grown in an illitic-chloritic silty loam with 0 and 120 mM NaCl. Three days after emergence of leaf 4, sampling was begun at 3 and 13 h into the 16-h light period. Spatial distributions of fresh weight (FW), dry weight (DW), and Na+, K+, Cl, NO 3, Ca2+, Mg2+, total P, and total N in the elongating and mature tissues were determined on a millimeter scale. The patterns of spatial distribution of Na+, Cl, K+, NO3 , and Ca2+ in the growing leaves were affected by salinity, while those of Mg2+, total P, and total N were not. Sodium, K+, Cl, Ca2+, Mg2+, and total N concentrations (mmol · kg−1 FW) were consistently higher at 120 mM NaCl than at 0 mM NaCl along the leaf axis from the leaf base, whereas NO3 concentration was lower at 120 mM NaCl. Deposition rates of all nutrients were greatest in the elongation zone. The elongation zone was the strongest sink for mineral elements in the leaf tissues. Local net deposition rates of Na+, Cl, Ca2+, and Mg2+ (mmol · kg−1 FW · h−1) in the most actively elongating zone were enhanced by 120 mM NaCl, whereas for NO3 this was depressed. The lower supply of NO 3 to growing leaves may be responsible for the inhibition of growth under saline conditions. Higher tissue concentrations of Na+ and Cl may cause ion imbalance but probably did not result in ion toxicity in the growing leaves. Potassium, Ca2+, Mg2+, total P, and total N are less plausibly responsible for the reduction in leaf growth in this study. Higher tissue K+ and Ca2+ concentrations at 120 mM NaCl are probably due to the presence of high Ca2+ in the soil of this study. Received: 13 March 1997 / Accepted: 9 June 1997  相似文献   

14.
Avocado proembryonic masses from suspension cultures were used to develop a protocol for somatic embryo development and maturation. Avocado somatic embryos could develop from proembryonic masses both in liquid and on semisolid medium but only the latter could develop to maturity. Size and number of opaque somatic embryos were affected by gellan gum concentration, with the optimum response obtained on medium supplemented with 6–7 g l−1 gellan gum. The optimum sucrose concentration for recovery of opaque somatic embryos was 90 g l−1; however, the development of embryos was suppressed at this concentration. Consequently, recovery of cotyledonary, opaque somatic embryos was achieved on medium with 30 g l−1 sucrose. Somatic embryo development from dedifferentiating proembryonic masses required media with a high ratio of NO 3 :NH 4 + (1:0 and 3:1) as opposed to the standard ratio (2:1) of MS medium. Germination of somatic embryos was sporadic. In order to increase the frequency of plant recovery, shoots that developed from somatic embryos were micropropagated using standard protocols. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Regeneration of several varieties of soybean [Glycine max (L.) Merrill] by somatic embryogenesis from cultured epicotyls and primary leaves has been demonstrated. Somatic embryogenesis was induced from epicotyls and primary leaves when cotyledon halves with the intact zygotic embryo axes were cultured on Murashige and Skoog (MS) medium supplemented with 10 mg 1−1 (45.2 μM) 2,4-D. Stable, continuously proliferating globular embryo cultures (GEC) were established from small groups of somatic embryos on MS medium supplemented with 20 mg 1−1 (90.5 μM) 2,4-dichlorophenoxyacetic acid (2,4-D). Rapid multiplication of shoot tips from germinating somatic embryos was achieved on Cheng’s basal medium (CBO) containing 2.5 mg 1−1 (11.3 μM) 6-benzyladenine. Fertile plants were obtained from individual somatic embryos and in vitro propagated adventitious shoot bud cultures.  相似文献   

16.
Soybean SE60 belongs to the γ-thionin family of proteins. We recently demonstrated that SE60 plays a role in defense during soybean development. Here, we show that SE60 is expressed in a tissue-specific and developmentally regulated manner. The expression of SE60 is distinct from that of the glycinin (Gy2) and extensin (SbHRGP3) genes of soybean during embryogenesis and germination. A SE60::GUS(−809) transgene, comprising −809 bp of the 5′-flanking region of SE60 fused to the GUS reporter gene, was expressed specifically in developing embryos, but not in the endosperms, from the globular stage of transgenic tobacco and Arabidopsis seeds. Furthermore, light affected the SE60::GUS(−809) expression pattern in germinating seedlings. Electrophoretic mobility shift assay (EMSA) revealed that soybean nuclear proteins as well as E. coli-expressed SB16, a high mobility group protein (HMG), were bound sequence-specifically to the fragment containing AT-rich motifs identified in the SE60 promoter. Interestingly, the soybean nuclear proteins binding to the two G-boxes and RY repeat were prevalent in seeds of 2–4 mm in size. In contrast, the nuclear proteins binding to the AT-rich motif and SE60 RNA expression were more prominent in seeds of 4–6 mm in size. Therefore, we propose that factors binding to the G-boxes or RY repeat initiate SE60 expression during embryogenesis.  相似文献   

17.
A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l−1 in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l−1, which permitted the proliferation of more non-transformed cells. Transgenic plants of “Alachua” and “Carlos” were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.  相似文献   

18.
An efficient protocol for secondary somatic embryogenesis in camphor tree is reported. Secondary somatic embryos (SSEs), initially obtained from the primary embryos of a nascent embryogenic culture in 2002, were proliferated and maintained for more than 4 yr via cyclic secondary somatic embryogenesis. Throughout this period, the embryo populations retained a high level of competence for plant regeneration. SSEs were produced on the surfaces of the cotyledons and radicular ends of maternal somatic embryos (MSEs). Histological observations of the various stages of secondary embryo development revealed four typical stages, namely, globular, heart-shaped, torpedo, and cotyledonary. The process of secondary embryogenesis continued in a cyclic way, with each newly formed embryo producing a subsequent generation of secondary embryos. In order to progress developmentally beyond proliferation cycles, cotyledonary embryos from one of embryogenic lines (L14) were cultured on Murashige and Skoog (MS) medium with 0.1–3.0 mg l−1 abscisic acid (ABA) or 0.05–1.0 mg l−1 thidiazuron (TDZ) in darkness for 2 mo to achieve maturation. Matured embryos were then transferred to MS-based germination medium containing either 0.1 mg l−1 TDZ, 0.2 mg l−1 indole-3-butyric acid (IBA), and 0.5 mg l−1 6-benzylaminopurine (BA) or 0.1 mg l−1 TDZ and 0.2 mg l−1 IBA and were cultured in light for germination. Over 50% of embryos matured in the presence of 0.5 mg l−1 ABA were able to germinate with shoots and poor root system. Frequencies of embryos germinating normal shoots among different genotypes did not change significantly. A total of 93% of the shoots from the germinated embryos converted to plantlets on half strength MS medium with 0.5 mg l−1 IBA by 3 wk. Plantlets acclimatized successfully to ex vitro conditions and developed as field-grown plants with normal appearance.  相似文献   

19.
In this study, the effects of carbon sources, abscisic acid (ABA) either alone or in combination with polyethylene glycol (PEG) were evaluated on secondary embryo (SE) induction and maturation in rapeseed microspore-derived embryos (MDE) of cultivars Global, PF704 and Option. Among various carbon sources tested (sucrose, glucose, fructose and sorbitol), the use of 0.3 M (300 mOsml−1) glucose and 0.2 M (200 mOsml−1) sorbitol in SE induction medium (for cultivars Global and PF704) and sorbitol at 0.2 and 0.3 M (200 and 300 mOsml−1, for cultivar Option), induced the highest secondary embryogenesis percentage (%SE). The highest number of SEs per each MDE (SE/MDE) was observed with 0.2 M (200 mOsml−1) sorbitol in cultivar Global and with 0.3 M (300 mOsml−1) glucose in cultivars PF704 and Option. In another part of this study, the effect of different concentrations of ABA (0, 20, 40, 60, 80 and 100 μM) and of a combined use of ABA (0 and 40 μM) and PEG 4000 or PEG 6000 at 15 g l−1 (3.75 and 2.5 mOsml−1, respectively) was examined on induction and maturation of SEs. In the first experiment, the use of ABA in SE induction medium reduced the mean number of SE/MDE in the three studied cultivars, whereas use of 40–80 μM ABA in SE induction medium increased the percentage of mature SEs in each cultivar. The combined use of PEG with or without ABA also reduced the mean number of SE/MDE compared with control, but resulted in significant enhancement of the percentages of mature SEs for the three cultivars.  相似文献   

20.
Fifty-two-day old plants of a salt tolerant line, S24 and a salt sensitive, Yecora Rojo were subjected for 15 days to 125 mol·m−3 NaCl in Hoagland’s nutrient solution under glass-house conditions. The dry matter of shoots and roots of the salt tolerant line was significantly greater over all time intervals in saline substrate than the salt sensitive line, Yecora Rojo. In the leaves of salt-treated former line concentration of Na+ and Cl was lower as compared to the latter line. The lower Na+ and Cl concentrations in the leaves of S24 were found to be associated with lower transport of these ions to the shoots whereas the reverse was true for Yecora Rojo. The lines did not differ in accumulation of either ion in roots. It is concluded that salt tolerance in these two genotypes of spring wheat is associated with restricted accumulation of toxic Na+ and Cl ions to the shoots or with restricted transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号