首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the glycosylation pattern of brain proteins have been associated with Creutzfeldt-Jakob disease (CJD). We have investigated the glycosylation status of acetylcholinesterase (AChE) by lectin binding assay. Our data show that in lumbar CSF from definite and probable sporadic CJD cases AChE activity is lower compared with that in age-matched controls. We also show, for the first time, that AChE glycosylation is altered in CJD CSF and brain. Unlike Alzheimer's disease, in which an alteration in both the glycosylation and levels of AChE molecular forms is observed, the abnormal glycosylation of AChE in CJD appears to be unrelated to changes in molecular forms of this enzyme. These findings suggest that altered AChE glycosylation in CJD may be a consequence of the general perturbation of the glycosylation machinery that affects prion protein, as well as other proteins. The diagnostic potential of these changes remains to be explored.  相似文献   

2.
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.  相似文献   

3.
4.
5.
6.
7.
Nuclear matrix proteins as biomarkers in prostate cancer   总被引:3,自引:0,他引:3  
The nuclear matrix (NM) is the structural framework of the nucleus that consists of the peripheral lamins and pore complexes, an internal ribonucleic protein network, and residual nucleoli. The NM contains proteins that contribute to the preservation of nuclear shape and its organization. These protein components better known as the NM proteins have been demonstrated to be tissue specific, and are altered in many cancers, including prostate cancer. Alterations in nuclear morphology are hallmarks of cancer and are believed to be associated with changes in NM protein composition. Prostate cancer is the most frequently diagnosed cancer in American men and many investigators have identified unique NM proteins that appear to be specific for this disease. These NM protein changes are associated with the development of prostate cancer, as well as in some cases being indicative of cancer stage. Identification of these NM proteins specific for prostate cancer provides an insight to understanding the molecular changes associated with this disease. This article reviews the role of NM proteins as tumor biomarkers in prostate cancer and the potential application of these proteins as therapeutic targets in the treatment of this disease.  相似文献   

8.
9.
In vivo bioluminescence imaging for integrated studies of infection   总被引:7,自引:4,他引:3  
Understanding biological processes in the context of intact organ systems with fine temporal resolution has required the development of imaging strategies that reveal cellular and molecular changes in the living body. Reporter genes that confer optical signatures on a given biological process have been used widely in cell biology and have been used more recently to interrogate biological processes in living animal models of human biology and disease. The use of internal biological sources of light, luciferases, to tag cells, pathogens, and genes has proved to be a versatile tool to provide in vivo indicators that can be detected externally. The application of this technology to the study of animal models of infectious disease has not only provided insights into disease processes, but has also revealed new mechanisms by which pathogens may avoid host defences during infection.  相似文献   

10.
11.
Many complex diseases such as cancer are associated with changes in biological pathways and molecular networks rather than being caused by single gene alterations. A major challenge in the diagnosis and treatment of such diseases is to identify characteristic aberrancies in the biological pathways and molecular network activities and elucidate their relationship to the disease. This review presents recent progress in using high-throughput biological assays to decipher aberrant pathways and network activities. In particular, this review provides specific examples in which high-throughput data have been applied to identify relationships between diseases and aberrant pathways and network activities. The achievements in this field have been remarkable, but many challenges have yet to be addressed.  相似文献   

12.
13.
Mycoplasma pulmonis is a murine pathogen that causes chronic respiratory disease in laboratory rats and mice. Several examples of high-frequency phenotypic switching have been reported for M. pulmonis, the molecular basis of which is unknown. We report here that during growth the M. pulmonis chromosome undergoes DNA rearrangements at a high frequency. Some of the rearrangements we examined correlated with changes in the susceptibility of the cells to mycoplasma virus P1, an example of phenotypic switching involving changes in surface antigen structure. Other rearrangements, unrelated to phenotypic switching, involved a DNA element present in the chromosome in multiple copies. The high level of DNA recombination that occurred in M. pulmonis indicates that this may be one of the most variable genomes studied to date. High levels of DNA recombination may contribute to the unusually high rate of evolution that mycoplasmas are thought to be undergoing. Understanding the molecular basis for this phenomenon may provide an insight into the chronic nature of many mycoplasmal infections.  相似文献   

14.
Benign bladder pathology resulting from prostatic hypertrophy or other causes is a significant problem associated with ageing in humans. This condition is characterized by increased bladder mass, decreased urinary flow rate, decreased compliance, and these and other changes in bladder function often subject patients to increased risk of urinary tract infection. While the physiologic attributes of benign bladder pathology have been extensively described in humans and in various animal model systems, the biochemical and molecular genetic bases for that pathology have only recently been investigated in detail. Studies demonstrate that mitochondrial energy production and utilization are severely impaired in bladder smooth muscle during benign bladder disease, and to a large extent this realization has provided a rational basis for understanding the characteristic alterations in urinary flow and compliance in bladder tissue. Recent investigations targeting the detailed molecular basis for impaired mitochondrial function in the disease have shown that performance of the organellar genetic system, and to a large extent that of relevant portions of the nuclear genetic system as well, is severely aberrant in bladder tissue. In this article, we discuss the physiologic aspects of benign bladder disease, summarize biochemical evidence for the altered mitochondrial energy metabolism that appears to underlie bladder pathology, review the structure and function of the mitochondrial genetic system, and discuss molecular genetic studies of that system which have begun to provide a mechanistic explanation for the biochemical and physiological abnormalities that characterize the disease. We also discuss areas for further research which will be critically important in increasing our understanding of the detailed causes of benign bladder pathology.  相似文献   

15.

Background

The diagnosis of mitochondrial disease requires a complex synthesis of clinical, biochemical, histological, and genetic investigations. An expanding number of mitochondrial diseases are being recognized, despite their phenotypic diversity, largely due to improvements in methods to detect mutations in affected individuals and the discovery of genes contributing to mitochondrial function. Improved understanding of the investigational pitfalls and the development of new laboratory methodologies that lead to a molecular diagnosis have necessitated the field to rapidly adopt changes to its diagnostic approach.

Scope of review

We review the clinical, investigational and genetic challenges that have resulted in shifts to the way we define and diagnose mitochondrial disease. Incorporation of changes, including the use of fibroblast growth factor 21 (FGF-21) and next generation sequencing techniques, may allow affected patients access to earlier molecular diagnosis and management.

Major conclusions

There have been important shifts in the diagnostic paradigm for mitochondrial disease. Diagnosis of mitochondrial disease is no longer reliant on muscle biopsy alone, but should include clinical assessment accompanied by the use of serological biomarkers and genetic analysis. Because affected patients will be defined on a molecular basis, oligosymptomatic mutation carriers should be included in the spectrum of mitochondrial disease. Use of new techniques such as the measurement of serum FGF-21 levels and next-generation-sequencing protocols should simplify the diagnosis of mitochondrial disease.

General significance

Improvements in the diagnostic pathway for mitochondrial disease will result in earlier, cheaper and more accurate methods to identify patients with mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

16.
17.
《Biophysical journal》2022,121(19):3663-3673
The prediction of protein mutations that affect function may be exploited for multiple uses. In the context of disease variants, the prediction of compensatory mutations that reestablish functional phenotypes could aid in the development of genetic therapies. In this work, we present an integrated approach that combines coevolutionary analysis and molecular dynamics (MD) simulations to discover functional compensatory mutations. This approach is employed to investigate possible rescue mutations of a poly(ADP-ribose) polymerase 1 (PARP1) variant, PARP1 V762A, associated with lung cancer and follicular lymphoma. MD simulations show PARP1 V762A exhibits noticeable changes in structural and dynamical behavior compared with wild-type (WT) PARP1. Our integrated approach predicts A755E as a possible compensatory mutation based on coevolutionary information, and molecular simulations indicate that the PARP1 A755E/V762A double mutant exhibits similar structural and dynamical behavior to WT PARP1. Our methodology can be broadly applied to a large number of systems where single-nucleotide polymorphisms have been identified as connected to disease and can shed light on the biophysical effects of such changes as well as provide a way to discover potential mutants that could restore WT-like functionality. This can, in turn, be further utilized in the design of molecular therapeutics that aim to mimic such compensatory effect.  相似文献   

18.
The study of chronic brain diseases including Alzheimer's disease in patients is typically limited to brain imaging or psychometric testing. Given the epidemic rise and insufficient knowledge about pathological pathways in sporadic Alzheimer's disease, new tools are required to identify the molecular changes underlying this disease. We hypothesize that levels of specific secreted cellular signaling proteins in cerebrospinal fluid or plasma correlate with pathological changes in the Alzheimer's disease brain and can thus be used to discover signaling pathways altered in the disease. Here we measured 91 proteins of this subset of the cellular communication proteome in plasma or cerebrospinal fluid in patients with Alzheimer's disease and cognitively normal controls to mathematically model disease-specific molecular traits. We found small numbers of signaling proteins that were able to model key pathological markers of Alzheimer's disease, including levels of cerebrospinal fluid β-amyloid and tau, and classify disease in independent samples. Several of these factors had previously been implicated in Alzheimer's disease supporting the validity of our approach. Our study also points to proteins which were previously unknown to be associated with Alzheimer's disease thereby implicating novel signaling pathways in this disorder.  相似文献   

19.
Abnormal glycosylation of dystroglycan (DG), a transmembrane glycoprotein, results in a group of diseases known as dystroglycanopathy. A severe dystroglycanopathy known as the limb girdle disease MDDGC9 [OMIM: 613818] occurs as a result of hypoglycosylation of alpha subunit of DG. Reasons behind this has been traced back to a point mutation (T192M) in DG that leads to weakening of interactions of DG protein with laminin and subsequent loss of signal flow through the DG protein. In this work we have tried to analyze the molecular details of the interactions between DG and laminin1 in order to propose a mechanism about the onset of the disease MDDGC9. We have observed noticeable changes between the modeled structures of wild type and mutant DG proteins. We also have employed molecular docking techniques to study and compare the binding interactions between laminin1 and both the wild type and mutant DG proteins. The docking simulations have revealed that the mutant DG has weaker interactions with laminin1 as compared to the wild type DG. Till date there are no previous reports that deal with the elucidation of the interactions of DG with laminin1 from the molecular level. Our study is therefore the first of its kind which analyzes the differences in binding patterns of laminin1 with both the wild type and mutant DG proteins. Our work would therefore facilitate analysis of the molecular mechanism of the disease MDDGC9. Future work based on our results may be useful for the development of suitable drugs against this disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号