首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A denaturation map of mitochondrial DNA from the wild type strain 5256 of Neurospora crassa was constructed by computer analysis of the contour length distribution of single- and double-stranded regions of nineteen circular and three full length linear molecules after partial denaturation. The data suggest that mitochondrial DNA in this strain is a homogeneous population of a circular molecule of molecular weight 41 - 10(6) with an asymmetric distribution of AT-rich regions, and that linear molecules derive from this genome by random breaks during isolation.  相似文献   

2.
The structure of circular pea chloroplast DNA (ctDNA) has been analyzed by denaturation mapping. All of the pea ctDNA molecules that were examined had identical gross base sequences. Denaturation maps were constructed at denaturation levels of 2.5%, 22%, and 44%. These denaturation maps showed that the circular pea ctDNA contained six small AT-rich regions on one-half of the DNA molecule, and two small GC-rich regions on the other half of the DNA molecule. The structure of pea ctDNA circular dimers was also examined. The results showed that the pea ctDNA circular dimers consisted of two monomer length units integrated in tandem repeat.  相似文献   

3.
Herpesvirus saimiri contains two species of DNA molecules. (i) The M genome is composed of 70% light (L) DNA (36% cytosine plus guanine; density in CsCl, 1.695 g/ml), which consists of unique sequences, and 30% heavy (H) DNA (71% cytosine plus guanine; density, 1.729 g/ml). (ii) The H genome contains heavy sequences exclusively. H sequences in M and H genomes cross-hybridize completely and are cleaved identically by restriction endonuclease R-Sma I into four classes of fragments with molecular weights of about 360,000, 300,000, 130,000 and 40,000, respectively. H sequences are chains of identical repeat units in tandem arrangement. The molecular weight of each repeat unit is about 830,000. L sequences have no cleavage site for endo R-Sma I H sequences are terminally arranged at both ends of the M genome, as seen by electron microscopy after partial denaturation. The length of the individual heavy ends varies between 21 mum and less than 1 mum, whereas the light region is uniform in size (35.3+/-0.35 mum). As a rule, molecules with a long heavy end at one side have a short heavy end at the other side, thus giving rise to a limited size heterogeneity. Orientation of M DNA molecules by the denaturation map of the light region shows that the longer heavy end may be located at the left or at the right side of the M genome.  相似文献   

4.
5.
Electron microscopic denaturation maps corresponding to the first peaks of the differential melting curve of SA7 DNA were constructed by fixation of partly denatured molecules with glyoxal at temperatures within the melting range. These maps were oriented with respect to the functional map of the virus genome. The localization and the size of the most AT-rich SA7 DNA regions were determined.  相似文献   

6.
Denaturation mapping of R factor deoxyribonucleic acid.   总被引:10,自引:8,他引:2       下载免费PDF全文
The R factor NR1 consists of two components: a resistance transfer factor which harbors the tetracycline resistance genes (RTF-TC) and the r-determinants component which harbors the other drug resistance genes. Using partial denaturation mapping it is possible to distinguish the RTF-TC region from the r-determinants region of the composite R factor NR1 DNA which has a contour length of 37 mum and a density of 1.712 g/ml. The r-determinants region was a relatively undenatured 8.5-mum segment of the molecule when the deoxyribonucleic acid was partially denatured at pH 10.7. An RTF-TC genetic segregant of NR1 which had lost the r-determinants component had a contour length of 28.7 mum and a density of 1.710 g/ml. Characterization of an RTF-TC using partial denaturation mapping at pH 10.7 confirmed that the relatively undenatured 8.5-mum r-determinants segment of the composite R factor had been deleted. Circular, transitioned NR1 DNA molecules (1.716 to 1.718 g/ml), whose contour lengths were consistent with an RTF-TC plus an integral number of tandem copies of r-determinants, were also characterized by denaturation mapping. The relatively undenatured region in these molecules had a length equal to an integral number of copies of r-determinants and was located at the same site in the partially denatured RTF-TC as the single copy of r-determinants in the 37-mum composite NR1. This indicates that there is a unique integration site for r-determinants in the RTF-TC component. The R factor UCR122, a TC deletion mutant of NR1, was also characterized by denaturation mapping. The translocation of the TC resistance gene(s) on the denaturation map permitted the alignment of the denaturation map with the heteroduplex map of Sharp et al. (u073). Linear and circular monomeric and presumed multimeric r-determinants DNA molecules (p = 1.718 g/ml) were partially denatured at a higher pH (11.10). The r-determinants multimers showed a repeating 8.3-mum (monomeric) partial denaturation pattern indicating a head-to-tail arrangement of monomers in these poly-r-determinant molecules.  相似文献   

7.
The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force F char, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: F char = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.  相似文献   

8.
DNA isolated from the hepatitis B antigen form known as the Dane particle was examined by electron microscopy before and after the endogenous Dane particle DNA polymerase reaction. The most frequently occurring form was an untwisted circular double-stranded DNA molecule approximately 1 mum in length. Less frequently occurring forms included circular DNA of approximately unit length and having one or more small single-stranded regions, similar circular molecules with one or more tails either shorter or longer than 1 mum in length, and very small circular molecules with tails. There was no increase in frequency or length of tails after a DNA polymerase reaction, suggesting that tails were not formed during this reaction. The mean length of circular molecules increased by 23% when DNA was spread in formamide compared with aqueous spreading, suggesting that single-stranded regions are present in most of the molecules. The mean length of circular molecules obtained from aqueous spreading increased by 27% after a Dane particle DNA polymerase reaction. This indicates that single-stranded regions were converted to double-stranded DNA during the reaction.  相似文献   

9.
Intramolecular base composition heterogeneity of human DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The intramolecular base composition heterogeneity of human DNA has been investigated by electron microscopic observations of partially denatured structures and by equilibrium solution thermal denaturation techniques. DNA sequences having an average length of less than 2000 base pairs are found to be heterogeneous in base composition. These heterogeneous sequences occupy a minimum of 67 to 81% of the human genome.  相似文献   

10.
11.
Macronuclear gene-sized molecules of hypotrichs.   总被引:7,自引:1,他引:6       下载免费PDF全文
The macronuclear genome of hypotrichous ciliates consists of DNA molecules of gene-sized length. A macronuclear DNA molecule contains a single coding region. We have analyzed the many hypotrich macronuclear DNA sequences sequenced by us and others. No highly conserved promoter sequences nor replication initiation sequences have been identified in the 5' nor in the 3' non-translated regions, suggesting that promoter function in hypotrichs may differ from other eukaryotes. The macronuclear genes are intron-poor; approximately 19% of the genes sequenced to date have one to three introns. Not all macronuclear DNA molecules may be transcribed; some macronuclear molecules may not have any coding function. Codon bias in hypotrichs is different in many respects from other ciliates and from other eukaryotes.  相似文献   

12.
The properties of inverted repeated sequences in wheat nuclear DNA have been studied by HAP(1) chromatography, nuclease S1 digestion and electron microscopy. Inverted repeated sequences comprise 1.7% of wheat genome. The HAP studies show that the amount of "foldback HAP bound DNA" depends on DNA length. Inverted repeats appear to be clustered with an average intercluster distance of 25 kb. It is estimated that there are approximately 3 x 10(6) inverted repeats per haploid wheat genome. The sequences around inverted repeats involve all families of repetition frequencies. Inverted repeats are observed as hairpins in electron microscopy. 20% of hairpins are terminated by a single-stranded spacer ranging from 0.3 to 1.5 kb in length. Duplex regions of the inverted repeats range from 0.1 to 0.45 kb with number average values of 0.24 kb and 0.18 kb for unlooped and looped hairpin respectively. Thermal denaturations and nuclease S1 digestions have revealed a length of about 100 bases for duplex regions. The methods used to study inverted repeated sequences are compared and discussed.  相似文献   

13.
The effect of progressive denaturation of open circular molecules (component II) and supercoiled covalently closed circular molecules (component I) of rat liver mitochondrial DNA has been followed by heating in the presence of formaldehyde and examination in the electron microscope. After heating at 49°C, two, three, or four regions of strand separation were visible in 25% of the component II molecules. Comparisons of the patterns of distribution of these regions in individual molecules indicated that they occurred at at least three specific positions around the molecule. Also, these regions, which were assumed to be rich in adenine and thymine, were within a segment which was less than 50% of the length of the molecule. After heating at 50°C, up to 14 regions of strand separation were observed, but when comparisons were made no clear groupings were found. At 51°C, component II molecules were completely separated into a single-stranded circle and a single-stranded linear piece of similar length. Strand separation was accompanied by shortening of the molecule. At 70°C, single-stranded circles had a mean length of 2.7 µ, compared with 5.0 µ for native molecules. Progressive heating of component I molecules resulted first in conversion to an open circle (I') and then to a second supercoiled form (I'). Visualization of further denaturation products of component I was prevented by crosslinking of the molecule by formaldehyde at high temperatures.  相似文献   

14.
Yeast mitochondrial DNA molecules have long, AT-rich intergenic spacers punctuated by short GC clusters. GC-rich elements have previously been characterized by others as preferred sites for intramolecular recombination leading to the formation of subgenomic petite molecules. In the present study we show that GC clusters are favored sites for intermolecular recombination between a petite and the wild-type grande genome. The petite studied retains 6.5 kb of mitochondrial DNA reiterated tandemly to form molecules consisting of repeated units. Genetic selection for integration of tandem 6.5 kb repeats of the petite into the grande genome yielded a novel recombination event. One of two crossovers in a double exchange event occurred as expected in the 6.5 kb of matching sequence between the genomes, whereas the second exchange involved a 44 bp GC cluster in the petite and another 44 bp GC cluster in the grande genome 700 bp proximal to the region of homology. Creation of a mitochondrial DNA molecule with a repetitive region led to secondary recombination events that generated a family of molecules with zero to several petite units. The finding that 44 bp GC clusters are preferred as sites for intermolecular exchange adds to the data on petite excision implicating these elements as recombinational hotspots in the yeast mitochondrial genome.  相似文献   

15.
Temperate bacteriophage Mu-1 was used to generate a lysogenic derivative of the F'lac episome of Escherichia coli. Intact, covalently circular molecules of F'lac and lysogenic F'lac Mu(+) deoxyribonucleic acid (DNA) were isolated and examined by electron microscopy. The mean contour lengths of F'lac and F'lac Mu(+) molecules were 37.6 +/- 0.4 mum and 53.2 +/- 0.4 mum, respectively. The mean difference, 15.6 mum, is similar to the mean contour length of 12.9 +/- 0.1 mum obtained for linear DNA molecules released by osmotic shock from mature phage Mu-1 virions. These results provide direct physical evidence that phage Mu-1 integrates by linear insertion of its genome into the DNA of lysogenic host bacteria. Chemical and physical analyses of phage Mu-1 DNA indicate that it is similar to E. coli DNA in respect of gross base composition, buoyant density, and melting temperature.  相似文献   

16.
The temperature dependence of the circular dichroism of the DNA-ethidium bromide complex at elevated temperatures provides evidence that the optical activity of the complex near 307 nm originates from interactions between intercalated dye molecules while the optical activity near 515 nm results from singly intercalated ethidium bromide molecules. The behavior of the circular dichroism of the complex at elevated temperatures also explains the higher ellipticities near 307 nm which characterize complexes formed between ethidium bromide and denaturated DNA. Finally the circular dichroism data indicate that the melting of the complex takes place in a stepwise manner with some DNA regions, probably AT-rich regions, dissociating first. The implications of these findings regarding the inhibiting effect of ethidium bromide on the function of DNA polymerase are examined.  相似文献   

17.
Nonintegrated, circular DNA molecules of Herpesvirus saimiri and Herpesvirus ateles were found in five lymphoid cell lines originating from tumor tissues or established by in vitro immortalization of T lymphocytes. The arrangement of unique (L) and repetitive (H) DNA sequences in circular viral genomes was analyzed by partial denaturation mapping followed by visualization with an electron microscope. Three types of circular viral DNA structures were found. (i) The virus-producing cell line RLC, which is derived from an H. ateles-induced rabbit lymphoma, contains circular viral genomes which consist of a single L-DNA and a single H-DNA region, both the same length as in virion DNA. (ii) The circular viral genomes of the nonproducer cell lines H1591 and A1601, in vitro transformed by H. saimiri and H. ateles, respectively, have deletions in the unique L-DNA region and larger H-DNA regions. Cell line A1601 lacks about 8% of virion L-DNA, and H1591 cells lack about 40% of viral L-DNA information. (iii) The nonproducing H. saimiri tumor cell lines 1670 and 70N2 harbor viral genomes with two L-DNA and two H-DNA regions, respectively. Both types of circular molecules have a long and a short L-segment. The sequence arrangements of circular DNA molecules from H. saimiri-transformed cell lines were compared with those of linear virion DNA by computer alignment of partial denaturation histograms. The L-DNA deletion in cell line H1591 was found to map in the right half of the virion DNA. Comparison of the denaturation patterns of both L regions of cell lines 1670 and 70N2 identified the short L regions as subsets of the long L regions. Thus, circular viral DNA molecules of all four nonproducer cell lines represent defective genomes.  相似文献   

18.
Partially denatured DNAs from mouse, cow, and chicken were visualized in the electron microscope by the basic protein film technique and the size and distribution of the denatured regions characterized. A-T rich sequences visualized at 15% denaturation average about 1500 bases in length for all three species and are arranged quite non-randomly in the genome. This arrangement is such that 30–50% of the entire genome contains no A-T rich DNA, and another 20% is composed about one-half of A-T rich sequences and one-half of other sequences. Comparison with DNA denaturation profiles indicates that for each organism these sequences are from 25–35% G+C and that there is very little if any DNA more A-T rich than these. Estimates from published studies of fluorescence enhancement of quinacrine bound to A-T rich DNAs suggest that the observed non-random organization of A-T rich sequences is sufficient to account for Q banding of metaphase chromosomes.  相似文献   

19.
The large EcoRI fragment of mouse ribosomal genes containing parts of the non-transcribed spacer, the external transcribed spacer located at the 5' end of the precursor molecule and about two thirds of the 18S sequence has been cloned in bacteriophage lambda gtWES. A physical map of the DNA was constructed by cleavage with several restriction endonucleases and hybridization of the restriction fragments of the recombinant DNA with labelled 18S and 45S rRNA. The orientation of the inserted fragment as well as the length of the 18S sequence was determined by electron microscopy of R-loop containing molecules. The absence of hybridization of the cloned fragment to other fragments in the genome shows that the non-transcribed spacer does not have a significant length of sequences in common with other sequences in the genome.  相似文献   

20.
The distinctive properties of satellite DNA molecules containing the genes for ribosomal RNA in Physarum polycephalum permits their identification in total, unfractionated nuclear DNA in the foldback form, after denaturation and fast annealing. Using the electron microscope the location and properties of three characteristic regions containing tandemly-repeated, inverted sequences have been investigated. At least two additional regions, also containing tandem repeats, are shown to be present and located towards each end of the rDNA molecule, at a site adjacent to the segment coding for the 26 S rRNA. All the regions which contain tandem repeats are composed of sequences which, within experimental error, appear to share a common unit repeat length of about 90 nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号