首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF.  相似文献   

2.
    
We have validated our previously described model for scale-up of packed-bed solid-state fermenters (Weber et al., 1999) with experiments in an adiabatic 15-dm(3) packed-bed reactor, using the fungi Coniothyrium minitans and Aspergillus oryzae. Effects of temperature on respiration, growth, and sporulation of the biocontrol fungus C. minitans on hemp impregnated with a liquid medium were determined in independent experiments, and the first two effects were translated into a kinetic model, which was incorporated in the material and energy balances of the packed-bed model. Predicted temperatures corresponded well with experimental results. As predicted, large amounts of water were lost due to evaporative cooling. With hemp as support no shrinkage was observed, and temperatures could be adequately controlled, both with C. minitans and A. oryzae. In experiments with grains, strong shrinkage of the grains was expected and observed. Nevertheless, cultivation of C. minitans on oats succeeded because this fungus did not form a tight hyphal network between the grains. However, cultivation of A. oryzae failed because shrinkage combined with the strong hyphal network formed by this fungus resulted in channeling, local overheating of the bed, and very inhomogeneous growth of the fungus. For cultivation of C. minitans on oats and for cultivation of A. oryzae on wheat and hemp, no kinetic models were available. Nevertheless, the enthalpy and water balances gave accurate temperature predictions when online measurements of oxygen consumption were used as input. The current model can be improved by incorporation of (1) gas-solids water and heat transfer kinetics to account for deviations from equilibrium observed with fast-growing fungi such as A. oryzae, and (2) the dynamic response of the fungus to changes in temperature, which were neglected in the isothermal kinetic experiments.  相似文献   

3.
固态发酵生产腺苷酸脱氨酶   总被引:1,自引:0,他引:1  
对多株曲霉产腺苷酸脱氨酶的性能进行了比较,发现米曲霉3.800(Aspergillus oryzae)产酶水平较高。该菌株固态发酵产酶的适宜培养基为:以麸皮为主原料,蔗糖2%,鱼粉2%,(NH4)2SO4 0.1%,柠檬酸钠0.2%,MgSO4 0.05%,吐温-80 0.1%,含水量50%。最佳的培养条件为:250mL三角瓶装20g培养基,在28-30℃培养60h。在优化条件下,培养物酶活可达到1543.48u/g鲜曲。  相似文献   

4.
Production of protease-resistant phytase by Aspergillus oryzae SBS50 was optimized in solid state fermentation using wheat bran as substrate. An integrated statistical optimization approach involving the Placket–Burman design followed by response surface methodology was employed. Among all the variables tested, incubation period, triton X-100, moisture ratio, and magnesium sulphate were identified as significant and further optimized using response surface methodology that resulted in 3.35-fold improvement in phytase production from 55.43 to 185.75 U/g dry mouldy bran (DMB). Optimal conditions for maximum phytase production (185.75 U/g DMB) included wheat bran 10 g per 250 ml flask moistened with 35 ml distilled water supplemented with 3.0% triton X-100, 0.04% magnesium sulphate, 1.0% sucrose and 0.5% yeast extract incubated at 30?°C for an incubation time of 48 h. Phytase titers were sustainable (179.55 to 185.75 U/g DMB), when the mould was grown in shake flasks of varied volumes and enamel-coated metallic trays under optimized conditions. Fermentation time was reduced to half from 96 h to 48 h after optimization resulting in a 6.7-fold enhancement in the phytase productivity from 577.39 to 3868.75 U/Kg/h and thus, reducing the cost of enzyme production. Phytase released inorganic phosphate, reducing sugars and soluble proteins from different food samples in a time dependent manner as a result of phytate hydrolysis.  相似文献   

5.
    
Elastin is a crosslinked hydrophobic protein found in abundance in vertebrate tissue and is the source of elasticity in connective tissues and blood vessels. The repeating polypeptide sequences found in the hydrophobic domains of elastin have been the focus of many studies that attempt to understand the function of the native protein on a molecular scale. In this study, the central residues of the (LGGVG)(6) elastin mimetic are targeted. Using a combination of a statistical analysis based on structures in the Brookhaven Protein Data Bank (PDB), 1D cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy, and 2D off-magic-angle-spinning (OMAS) spin-diffusion experiments, it is determined that none of the residues are found in a singular regular, highly ordered structure. Instead, like the poly(VPGVG) elastin mimetics, there are multiple conformations and significant disorder. Furthermore, the conformational ensembles are not reflective of proteins generally, as in the PDB, suggesting that the structure distributions in elastin mimetics are unique to these peptides and are a salient feature of the functional model of the native protein.  相似文献   

6.
A simple experimental diffusion controlled fermentor (DCF), coupled with the use of a mathematical model based on mass balance, is proposed to measure the variation of the gas (CO(2) and O(2)) diffusion coefficients in solid state fermentation. The DCF was packed with an ion-exchange resin impregnated with a nutritive medium and inoculated with Aspergillus niger. The growth conditions in the DCF were very similar to those found in equipment operated with convective oxygen supply. The diffusion coefficient was shown to be very dependent on the biomass concentration within the solid state fermentor, and attained values of less than 5% of the molecular diffusion in air when the biomass in the fermentor reached 27 mg dry/g dry support.  相似文献   

7.
AIMS: To examine the reliability of membrane cultures as a model solid-state fermentation (SSF) system. METHODS AND RESULTS: In overcultures of Aspergillus oryzae on sterilized wheat flour discs overlaid with a polycarbonate membrane, we demonstrated that the presence of membrane filters reduced the maximum respiration rate (up to 50%), and biomass and alpha-amylase production. We also show that the advantage of membrane cultures, i.e. total recovery of biomass, is not very evident for the system used, while the changes in metabolism and kinetics are serious drawbacks. CONCLUSIONS: The use of membrane cultures is artificial and without substantial benefits and therefore has to be carefully considered. SIGNIFICANCE AND IMPACT OF THE STUDY: In future studies on kinetics and stoichiometry of SSF, one should not completely rely on experiments using membrane cultures as a model SSF system.  相似文献   

8.
Aims: To improve the α‐amylase production in solid‐state fermentation (SSF) condition utilizing a new bioreactor (NB) system. Methods and Results: In NB system, 20 g of wheat bran moistened with liquid medium in 1 : 1 ratio (w/v) was taken on the tray present inside the upper vessel and an additional 80 ml medium was supplemented into the lower vessel. Oxygen uptake rate was improved by supplying compressed air that lifted the liquid medium into the upper vessel and touched the substrate bed. This condition probably facilitated the heat transfer to liquid medium, reduce water loss and catabolite repression. With 1% glucose supplementation, maximum α‐amylase activity of 22 317 Ugds?1 was produced by Aspergillus oryzae IFO 30103 within a very short incubation period (48 h) at 2‐cm bed height with air flow rate of 0·1 l min?1 g?1 wheat bran at 32°C and initial medium pH of 6. Conclusions: Within a short incubation period, significantly high α‐amylase activity was obtained and it is higher than those reported to date at bioreactor scale operating with a fungal strain. Significance and Impact of the Study: The reactor is novel and can overcome some of the major problems associated with SSF process. A. oryzae IFO 30103 is reported as the best fungal source for α‐amylase production.  相似文献   

9.
黑曲霉SL2-111固体发酵生产果胶酯酶的研究   总被引:5,自引:0,他引:5  
汤鸣强 《生物技术》2006,16(2):65-68
目的:研究黑曲霉(Aspergillus niger)诱变菌株SL2-111产果胶酯酶的发酵及浸提条件。方法:通过固体发酵,考察碳氮源、无机盐及培养条件等因素对产酶的影响。采用不同浸提剂与硫酸铵浓度,比较浸提与分离效果。结果:以麸皮为主要原料,培养物最高酶活力可达到32 975U/g鲜曲。产酶最适培养基为:麸皮10g,柚皮粉1.5g,(NH4)2SO41.0g,CaCl20.075g。最佳产酶条件为:28℃,pH 6.5,培养52h。成曲的最佳浸提剂为蒸馏水,果胶酯酶硫酸铵分级沉淀的浓度为50~90%。结论:黑曲霉(Aspergil-lus niger)诱变菌株SL2-111产果胶酯酶的发酵及浸提条件值得进一步研究。  相似文献   

10.
  总被引:2,自引:0,他引:2  
Oxygen limitation in solid-state fermentation (SSF) has been the topic of modeling studies, but thus far, there has been no experimental elucidation on oxygen-transfer limitation at the particle level. Therefore, intra-particle oxygen transfer was experimentally studied in cultures of Rhizopus oligosporus grown on the surface of solid, nutritionally defined, glucose and starch media. The fungal mat consisted of two layers--an upper layer with sparse aerial hyphae and gas-filled interstitial pores, and a dense bottom layer with liquid-filled pores. During the course of cultivation ethanol was detected in the medium indicating that oxygen was depleted in part of the fungal mat. Direct measurement of the oxygen concentrations in the fungal mat during cultivation, using oxygen microelectrodes, showed no oxygen depletion in the upper aerial layer, but revealed development of steep oxygen concentration gradients in the wet bottom layer. Initially, the fungal mat was fully oxygenated, but after 36.5 hours oxygen was undetectable at 100 microm below the gas-liquid interface. This was consistent with the calculated oxygen penetration depth using a reaction-diffusion model. Comparison of the overall oxygen consumption rate from the gas phase to the oxygen flux at the gas-liquid interface showed that oxygen consumption of the microorganisms occurred mainly in the wet part of the fungal mat. The contribution of the aerial hyphae to overall oxygen consumption was negligible. It can be concluded that optimal oxygen transfer in SSF depends on the available interfacial gas-liquid surface area and the thickness of the wet fungal layer. It is suggested that the moisture content of the matrix affects both parameters and, therefore, plays an important role in optimizing oxygen transfer in SSF cultures.  相似文献   

11.
Production of pectinesterase and polygalacturonase by Aspergillus niger was studied in submerged and solid-state fermentation systems. With pectin as a sole carbon source, pectinesterase and polygalacturonase production were four and six times higher respectively in a solid state system than in a submerged fermentation system and required a shorter time for enzyme production. The addition of glucose increased pectinesterase and polygalacturonase production in the solid state system but in submerged fermentation the production was markedly inhibited. A comparison of enzyme productivities showed that those determined for pectinesterase and polygalacturonase with pectin as a carbon source were three and five times higher by using the solid state rather than the submerged fermentation system. The productivities of the two enzymes were affected by glucose in both fermentation systems. The membranes of cells from the solid state fermentation showed increased levels of C18:1, C16:0 and C18:0 fatty acids. Differences in the regulation of enzyme synthesis by Aspergillus niger depended on the fermentation system, favoring the solid state over the submerged fermentation for pectinase production. Received 12 May 1997/ Accepted in revised form 19 September 1997  相似文献   

12.
    
Filamentous fungi that could be classified into Aspergillus flavus/oryzae were isolated from traditionally fermented meju commercially available in Korea. The samples were analyzed for aflatoxin B1 and ochratoxin A contamination by HPLC; however, no toxin was detected. In addition, fungal and bacterial metagenomic sequencing were performed to analyze the microbial distribution in the samples. The results revealed that the distribution and abundance of fungi and bacteria differed considerably depending on the production regions and fermentation conditions of the meju samples. Through morphological analysis, ITS region sequencing, and assessment of the aflatoxin-producing ability, a total of 32 A. flavus/oryzae strains were identified. PCR analysis of six regions with a high mutation frequency in the aflatoxin gene cluster (AGC) revealed a total of six types of AGC breaking point patterns. The A. flavus/oryzae strains did not exhibit the high amylase activity detected in the commercial yellow koji strain (starter mold). However, their peptidase and lipase activities were generally higher than that of the koji isolates. We verified the safety of the traditionally fermented meju samples by analyzing the AGC breaking point pattern and the enzyme activities of A. flavus/oryzae strains isolated from the samples. The isolated strains could possibly be used as starter molds for soybean fermentation.  相似文献   

13.
实验以棉粕和玉米秆为主要原料,采用单因素和正交实验方法对黑曲霉固态发酵产木聚糖酶的培养条件进行了优化,为了获得高酶活产品的发酵条件。结果表明,最适培养基组分为棉粕和玉米秆的比例为3∶2,固水比为1∶1.2,尿素的最适添加量为2%(以干重计),KH2PO4的最适添加量为0.2%。在此条件下,菌株产酶活性可达6 529U/g干曲。该酶的最适反应温度为55℃,最适pH为5.0,pH稳定范围较宽,在30℃、pH 3.5~6.0范围内处理100min,酶活保持在85%以上,但耐热性不是很理想,在60℃保温30min残余酶活只有17%。  相似文献   

14.
Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese.  相似文献   

15.
Caesalpinia digyna, a tannin-rich forest residue, was used as substrate for production of tannase and gallic acid. Media engineering was carried out under solid-state fermentation, submerged fermentation and modified solid state fermentation conditions for optimum synthesis of tannase and gallic acid (based on 58% tannin content in the raw material). Tannase vis-à-vis gallic acid recovery under modified solid-state fermentation condition was maximum. Conversions of tannin to gallic acid under solid-state fermentation, submerged fermentation and modified solid-state fermentation conditions were 30.5%, 27.5% and 90.9%, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 29–38. Received 02 November 1999/ Accepted in revised form 12 February 2000  相似文献   

16.
Microbial production of gallic acid by modified solid state fermentation   总被引:4,自引:0,他引:4  
Bioconversion of tannin to gallic acid from powder of teri pod (Caesalpinia digyna) cover was achieved by the locally isolated fungus, Rhizopus oryzae, in a bioreactor with a perforated float for carrying solid substrate and induced inoculum. Modified Czapek-Dox medium, put beneath the perforated float, with 2% tannic acid at pH 4.5, temperature 32°C, 93% relative humidity, incubated for 3 days with 3-day-old inoculum was optimum for the synthesis of tannase vis-à-vis gallic acid production. Conversion of tannin to gallic acid was 90.9%. Diethyl ether was used as the solvent for extraction of gallic acid from the fermented biomass. Received 14 December 1998/ Accepted in revised form 17 June 1999  相似文献   

17.
Water addition to the solid substrate preceding autoclaving increased substrate porosity and phytase production in solid state fermentation. In comparison with dry sterilization, the phytase activity increased 6‐, 8.5‐, and 10‐fold when the autoclaving time was 20, 40, and 60 min, respectively. Autoclaving increased the void space of sterilized lentils, and the increase was 16% higher when water was supplemented to the lentils before sterilization. Image analysis of SEM pictures of the solid substrate showed that water supplementation presterilization portended greater micro‐fissure surface area, which also increased with increasing the sterilization time. SEM pictures of the fermentation product showed that fungal growth into the center of the solid substrate was ubiquitous when water was supplemented before sterilization but was absent when water was supplemented post sterilization. Similarly, spore formation on the substrate surface for the presterilization water supplementation samples far exceeded spore formation for samples that received supplementation poststerilization. This evidence suggests that improved mass transfer into the solid substrate resulting from additional pore volume and the formation of micro‐fissures on the substrate surface is responsible for the observed gains in phytase productivity in solid state fermentation. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

18.
米曲霉表达系统与大肠杆菌表达系统和酵母表达系统相比有许多优点,目前绝大多数研究都关注如何提高米曲霉在液体发酵条件下生产蛋白质,但米曲霉在固体培养条件下生产多种蛋白的能力比在液体培养条件下强,这不仅与米曲霉在不同培养条件下的生长形态有关,还与不同代谢途径中特定基因的调控因子如启动子的特性有关。米曲霉葡萄糖淀粉酶基因glaB在固体培养条件下的表达效率明显高于其在液体培养条件下的效率,以葡萄糖淀粉酶基因glaB为例,综述了glaB启动子的研究概况,为今后更好地利用这类启动子提供参考。  相似文献   

19.
    
The elasticity of vertebrate tissue originates from the insoluble, cross-linked protein elastin. Here, the results of variable-temperature (2) H NMR spectra are reported for hydrated elastin that has been enriched at the Hα position in its abundant glycines. Typical powder patterns reflecting averaged quadrupolar parameters are observed for the frozen protein, as opposed to the two, inequivalent deuterons that are detected in a powder sample of enriched glycine. The spectra of the hydrated elastin at warmer temperatures are dominated by a strong central peak with features close to the baseline, reflective of both isotropic and very weakly anisotropic motions.  相似文献   

20.
    
Solid‐state NMR studies of collagen samples of various origins confirm that the amplitude of collagen backbone and sidechain motions increases significantly on increasing the water content. This conclusion is supported by the changes observed in three different NMR observables: (i) the linewidth dependence on the 1H decoupling frequency; (ii) 13C CSA changes for the peptide carbonyl groups, and (iii) dephasing rates of 1H‐13C dipolar couplings. In particular, a nearly threefold increase in motional amplitudes of the backbone librations about C‐Cα or N‐Cα bonds was found on increasing the added water content up to 47 wt%D2O. On the basis of the frequencies of NMR observables involved, the timescale of the protein motions dependent on the added water content is estimated to be of the order of microseconds. This estimate agrees with that from wideline T2 1H NMR measurements. Also, our wideline 1H NMR measurements revealed that the timescale of the microsecond motions in proteins reduces significantly on increasing the added water content, i.e., an ~15‐fold increase in protein motional frequencies is observed on increasing the added water content to 45 wt% D2O. The observed changes in collagen dynamics is attributed to the increase in water translational diffusion on increasing the amount of added water, which leads to more frequent “bound water/free water” exchange on the protein surface, accompanied by the breakage and formation of new hydrogen bonds with polar functionalities of protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 246–256, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号