首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HPr kinase/phosphatase (HPrK/P) modifies serine 46 of histidine-containing protein (HPr), the phosphorylation state of which is the control point of carbon catabolite repression in low G+C Gram-positive bacteria. To understand the structural mechanism by which HPrK/P carries out its dual, competing activities we determined the structure of full length HPrK/P from Mycoplasma pneumoniae (PD8 ID, 1KNX) to 2.5A resolution. The enzyme forms a homo-hexamer with each subunit containing two domains connected by a short loop. The C-terminal domain contains the well-described P-loop (Walker A box) ATP binding motif and takes a fold similar to phosphoenolpyruvate carboxykinase (PEPCK) from Escherichia coli as recently described in other HPrK/P structures. As expected, the C-terminal domain is very similar to the C-terminal fragment of Lactobacillus casei HPrK/P and the C-terminal domain of Staphylococcus xylosus HPrK/P; the N-terminal domain is very similar to the N-terminal domain of S.xylosus HPrK/P. Unexpectedly, the N-terminal domain resembles UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-diaminopimelate ligase (MurE), yet the function of this domain is unclear. We discuss these observations as well as the structural significance of mutations in the P-loop and HPrK/P family sequence motif.  相似文献   

2.
Mycoplasma pneumoniae is a pathogenic bacterium that is highly adapted to life on mucosal surfaces. This adaptation is reflected by the very compact genome and the small number of regulatory proteins. However, M. pneumoniae possesses the HPr kinase/phosphorylase (HPrK/P), the key regulator of carbon metabolism in the Firmicutes. In contrast to the enzymes of other bacteria, the HPrK/P of M. pneumoniae is already active at very low ATP concentrations, suggesting a different mode of regulation. In this work, we studied the ability of M. pneumoniae to utilize different carbohydrates and their effects on the activity of the different phosphotransferase system (PTS) components. Glucose served as the best carbon source, with a generation time of about 30 h. Fructose and glycerol were also used but at lower rates and with lower yields. In contrast, M. pneumoniae is unable to use mannitol even though the bacterium is apparently equipped with all the genes required for mannitol catabolism. This observation is probably a reflection of the continuing and ongoing reduction of the M. pneumoniae genome. The general enzymatic and regulatory components of the PTS, i.e., enzyme I, HPr, and HPrK/P, were present under all growth conditions tested in this study. However, HPrK/P activity is strongly increased if the medium contains glycerol. Thus, the control of HPrK/P in vivo differs strongly between M. pneumoniae and the other Firmicutes. This difference may relate to the specific conditions on lipid-rich cell surfaces.  相似文献   

3.
The HPr kinase/phosphorylase (HPrK/P) is a bifunctional enzyme that controls the phosphorylation state of the phospho-carrier protein HPr, which regulates the utilization of carbon sources in Gram-positive bacteria. It uses ATP or pyrophosphate for the phosphorylation of serine 46 of HPr and inorganic phosphate for the dephosphorylation of Ser(P)-46-HPr via a phosphorolysis reaction. HPrK/P is a hexameric protein kinase of a new type with a catalytic core belonging to the family of nucleotide-binding protein with Walker A motif. It exhibits no structural similarity to eukaryotic protein kinases. So far, HPrK/P structures have shown the enzyme in its phosphorylase conformation. They permitted a detailed characterization of the phosphorolysis mechanism. In the absence of a structure with bound nucleotide, we used the V267F mutant enzyme to assess the kinase conformation. Indeed, the V267F replacement was found to cause an almost entire loss of the phosphorylase activity of Lactobacillus casei HPrK/P. In contrast, the kinase activity remained conserved. To elucidate the structural alterations leading to this drastic change of activity, the x-ray structure of the catalytic domain of L. casei HPrK/P-V267F was determined at 2.6A resolution. A comparison with the structure of the wild type enzyme showed that the mutation induces conformation changes compatible with the switch from phosphorylase to kinase function. Together with nucleotide binding fluorescence measurements, these results allowed us to decipher the cooperative behavior of the protein and to gain new insights into the allosteric regulation mechanism of HPrK/P.  相似文献   

4.
In most Gram-positive bacteria, catabolite repression is mediated by a bifunctional enzyme, the HPr kinase/phosphorylase (HprK/P). It has recently been shown that HprK/P could catalyze the phosphorylation of the protein HPr by using pyrophosphate (PP(i)) as a phosphate donor instead of ATP. Here we showed that, as for ATP, PP(i) binds to the enzyme with strong positive cooperativity. However, in contrast to ATP, PP(i) binding does not modify the fluorescence properties of the unique Trp residue of Bacillus subtilis HprK/P. In addition, to understand how two conserved motifs, namely, the P-loop and the specific signature of this family, participate in the three enzymatic activities of HprK/Ps (ATP-kinase, PP(i)-kinase, and phosphorylase), several site-directed mutants were generated. Whereas the three activities are mediated by the P-loop which is directly involved in the binding of ATP, PP(i), or Pi, the signature motif seems to be involved preferentially in the dephosphorylation reaction. On the basis of these results, we propose a model in which the binding of the allosteric activator FBP induces a conformational change of a central loop located above the active site of HprK/P, thereby allowing the ATP binding. However, this conformational change is not required for the binding of PP(i).  相似文献   

5.
HPr kinase/phosphatase (HprK/P) is a key regulatory enzyme controlling carbon metabolism in Gram- positive bacteria. It catalyses the ATP-dependent phosphorylation of Ser46 in HPr, a protein of the phosphotransferase system, and also its dephosphorylation. HprK/P is unrelated to eukaryotic protein kinases, but contains the Walker motif A characteristic of nucleotide-binding proteins. We report here the X-ray structure of an active fragment of Lactobacillus casei HprK/P at 2.8 A resolution, solved by the multiwavelength anomalous dispersion method on a seleniated protein (PDB code 1jb1). The protein is a hexamer, with each subunit containing an ATP-binding domain similar to nucleoside/nucleotide kinases, and a putative HPr-binding domain unrelated to the substrate-binding domains of other kinases. The Walker motif A forms a typical P-loop which binds inorganic phosphate in the crystal. We modelled ATP binding by comparison with adenylate kinase, and designed a tentative model of the complex with HPr based on a docking simulation. The results confirm that HprK/P represents a new family of protein kinases, first identified in bacteria, but which may also have members in eukaryotes.  相似文献   

6.
The bifunctional allosteric enzyme HPr kinase/phosphatase (HPrK/P) from Bacillus subtilis is a key enzyme in the main mechanism of carbon catabolite repression/activation (i.e. a means for the bacteria to adapt rapidly to environmental changes in carbon sources). In this regulation system, the enzyme can phosphorylate and dephosphorylate two proteins, HPr/HPr(Ser(P)) and Crh/Crh(Ser(P)), sensing the metabolic state of the cell. To acquire further insight into the properties of HPrK/P, electrospray ionization mass spectrometry, dynamic light scattering, and BIACORE were used to determine the oligomeric state of the protein under native conditions, revealing that the enzyme exists as a hexamer at pH 6.8 and as a monomer and dimer at pH 9.5. Using an in vitro radioactive assay, the influence of divalent cations, pH, temperature, and different glycolytic intermediates on the activity as well as kinetic parameters were investigated. The presence of divalent cations was found to be essential for both opposing activities of the enzyme. Furthermore, pH values equal to the internal pH of vegetative cells seem to favor the kinase activity, whereas lower pH values increased the phosphatase activity. Among the glycolytic intermediates evaluated, fructose 1,6-diphosphate and fructose 2,6-diphosphate were found to be allosteric activators in the kinase assay, whereas high concentrations inhibited the phosphatase activity, except for fructose 1,6-diphosphate in the case of HPr(Ser(P)). Phosphatase activity was induced by inorganic phosphate as well as acetyl phosphate and glyceraldehyde 3-phosphate. Kinetic parameters indicate a preference for binding of HPr compared with Crh to the enzyme and supported a strong positive cooperativity. This work suggests that the oligomeric state of the enzyme is influenced by several effectors and is correlated to the kinase or phosphatase activity. The phosphatase activity is mainly supported by the hexameric form.  相似文献   

7.
A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 +/- 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the complex of HPr with the core of HPrK/P of L. casei in crystals.  相似文献   

8.
The hprK gene encoding bifunctional HPrK/P (kinase/ phosphorylase) was cloned from L. mesenteroides SY1, a strain isolated from kimchi. hprK was transcribed as a monocistronic gene. His-tagged HPrH16A and HPrK/P were produced in E. coli BL21(DE3) using pET26b(+) and purified. HPrK/P phosphorylation assay with purified proteins showed that the kinase activity of HPrK/P increased at slightly acidic pHs. Divalent cations such as Mg2+ and Mn2+ and glycolytic intermediates such as fructose-1, 6-bisphosphate (FBP) and phosphoenolpyruvate (PEP) increased the kinase activity of HPrK/P, but inorganic phosphate strongly inhibited it. Kinetic studies for the kinase activity of HPrK/P showed that the apparent Km values were 0.18 and 14.57 microM for ATP and HPr, respectively. The Km value for the phosphorylase activity of HPrK/P was 14.16 microM for P-Ser-HPr (HPr phosphorylated at the serine residue).  相似文献   

9.
The histidine protein HPr has a key role in regulation of carbohydrate utilization in low-GC Gram-positive bacteria. Bacilli possess the paralogue Crh. Like HPr, Crh becomes phosphorylated by kinase HPrK/P in response to high fructose-1,6-bisphosphate concentrations. However, Crh can only partially substitute for the regulatory functions of HPr leaving its role mysterious. Using protein co-purification, we identified enzyme methylglyoxal synthase MgsA as interaction partner of Crh in Bacillus subtilis. MgsA converts dihydroxyacetone-phosphate to methylglyoxal and thereby initiates a glycolytic bypass that prevents the deleterious accumulation of phospho-sugars under carbon overflow conditions. However, methylgyloxal is toxic and its production requires control. We show here that exclusively the non-phosphorylated form of Crh interacts with MgsA in vivo and inhibits MgsA activity in vitro. Accordingly, Crh inhibits methylglyoxal formation in vivo under nutritional famine conditions that favour a low HPr kinase activity. Thus, Crh senses the metabolic state of the cell, as reflected by its phosphorylation state, and accordingly controls flux through the harmful methylglyoxal pathway. Interestingly, HPr is unable to bind and regulate MgsA, making this a bona fide function of Crh. Four residues that differ in the interaction surfaces of HPr and Crh may account for this difference.  相似文献   

10.
11.
Lavergne JP  Jault JM  Galinier A 《Biochemistry》2002,41(20):6218-6225
In Bacillus subtilis, carbon catabolite repression is mediated by the HPr kinase/phosphatase (HprK/P) which catalyzes both an ATP-dependent phosphorylation and a dephosphorylation on Ser-46 of either HPr (histidine-containing protein) or Crh (catabolite repression HPr). By using a surface plasmon resonance approach, it was shown here that the presence of magnesium is a prerequisite for the interaction of HprK/P with either HPr or Crh. HprK/P binds both protein substrates with a similar affinity (K(D) of about 40 nM), and addition of nucleotides increases by about 10-fold its affinity for each substrate. In addition, the specificity and the concentration of the cation required for the binding of protein substrates are different from that exhibited by the cation-binding site involved in the nucleotide binding, suggesting the presence of two cation-binding sites on HprK/P. The effects of phosphate on enzymatic activities of HprK/P were also investigated. Phosphate was able to unmask the phosphatase activity, especially in the presence of ATP or both ATP and fructose 1,6-bisphosphate whereas it was shown to inhibit the kinase activity of HprK/P. An apparent competition between phosphate and a fluorescent analogue of nucleotide led to the suggestion that phosphate mediates its effect by binding directly to the ATP-binding site of the enzyme.  相似文献   

12.
The Bacillus stearothermophilus no. 236 gene encoding the bifunctional enzyme HprK/P, the key regulator of carbon catabolite repression/activation (CCR/CCA) in most Gram-positive bacteria, was cloned and the (His)(6)-tagged gene product was characterized in detail. The nucleotide sequence of the hprK/P gene corresponded to an open reading frame of 951 bp that encoded a polypeptide of 316 amino acid residues with a calculated molecular mass of 35,458 Da. The deduced amino acid sequence of the B. stearothermophilus no. 236 HprK/P showed 64.5% identity with the B. subtilis enzyme, allowing us to identify two highly conserved motifs, the nucleotide binding P-loop (Walker motif A) and the HprK/P family signature sequence in the C-terminal half of the protein. Furthermore, complementation experiments showed that the cloned hprK/P gene product was functionally active in the B. subtilis cells. The purified (His)(6)-tagged B. stearothermophilus no. 236 HprK/P migrated on SDS-PAGE gel as a single species with a molecular mass of about 36 kDa, and behaved in gel filtration like a hexameric protein. The recombinant protein catalyzes the pyrophosphate (PPi)-dependent (highest activity at pH 7.0 and 40 degrees C) as well as the ATP-dependent phosphorylation of Ser46 in HPr (maximum activity at pH 8.0 and 45 degrees C). It also catalyzes the inorganic phosphate-dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr, optimally at pH 6.5 and 40 degrees C. BIAcore surface resonance analysis confirmed that a divalent cation, preferentially Mg(2+), was an indispensable cofactor for the three activities of the HprK/P. Fructose-1,6-bisphosphate (FBP) was observed to stimulate ATP-dependent kinase activity, while inorganic phosophate (Pi) inhibited ATP-dependent kinase activity. Mutations in the Walker motif A simultaneously abolished both types of kinase and phosphorylase activities. On the other hand, the conserved signature residues were confirmed to be involved in the PPi-dependent kinase and phosphorylase reactions.  相似文献   

13.
Protein phosphorylation plays a major role in bacterial cellular regulation as in eukaryotes. The HPr Kinase/Phosphorylase (HprK/P) was the first bacterial serine protein kinase to have had its structure determined, establishing that it is unrelated to the eukaryotic kinases. HprK/P belongs to another large structural family, the P-loop containing proteins. Among them, P-loop containing kinases have been assumed to only phosphorylate small molecules, but the example of HprK/P suggests that some may have proteins as substrates, defining novel cellular signal transduction pathways. Another major result of the studies presented here is that HprK/P also catalyses the phosphorolysis of the phosphoserine, yielding serine and pyrophosphate. The two different catalytic activities are carried out at the same active site. The determination of the structure of the complex with the protein substrates HPr and PserHPr allowed us to propose a catalytic mechanism. Since regulation of HPr phosphorylation has been shown to be involved in the virulence process of pathogenic bacteria, a search for specific inhibitors of HprK/P is of clinical interest and the first hit has already been found.  相似文献   

14.
Similarities between protein three-dimensional structures can reveal evolutionary and functional relationships not apparent from sequence comparison alone. Here we report such a similarity between the metabolic enzymes histidine phosphocarrier protein kinase (HPrK) and phosphoenolpyruvate carboxykinase (PCK), suggesting that they are evolutionarily related. Current structure classifications place PCK and other P-loop containing nucleotidyl-transferases into different folds. Our comparison of both HPrK and PCK to other P-loop containing proteins reveals that all share a common structural motif consisting of an alphabeta segment containing the P-loop flanked by an additional beta-strand that is adjacent in space, but far apart along the sequence. Analysis also shows that HPrK/PCK differ from other P-loop containing structures no more than they differ from each other. We thus suggest that HPrK and PCK should be classified with other P-loop containing proteins, and that all probably share a common ancestor that probably contained a simple P-loop motif with different protein segments being added or lost over the course of evolution. We used the structure-based sequence alignment containing residues specific to HPrK/PCK to identify additional members of this P-loop containing family.  相似文献   

15.
Bacillus subtilis possesses carbon-flux regulating histidine protein (Crh), a paralog of the histidine protein (HPr) of the phosphotransferase system (PTS). Like HPr, Crh becomes (de)phosphorylated in vitro at residue Ser46 by the metabolite-controlled HPr kinase/phosphorylase HPrK/P. Depending on its phosphorylation state, Crh exerts regulatory functions in connection with carbohydrate metabolism. So far, knowledge on phosphorylation of Crh in vivo has been limited and derived from indirect evidence. Here, we studied the dynamics of Crh phosphorylation directly by non-denaturing gel electrophoresis followed by Western analysis. The results confirm that HPrK/P is the single kinase catalyzing phosphorylation of Crh in vivo. Accordingly, phosphorylation of Crh is triggered by the carbon source as observed previously for HPr, but with some differences. Phosphorylation of both proteins occurred during exponential growth and disappeared upon exhaustion of the carbon source. During exponential growth, ~80% of the Crh molecules were phosphorylated when cells utilized a preferred carbon source. The reverse distribution, i.e. around 20% of Crh molecules phosphorylated, was obtained upon utilization of less favorable substrates. This clear-cut classification of the substrates into two groups has not previously been observed for HPr(Ser)~P formation. The likely reason for this difference is the additional PTS-dependent phosphorylation of HPr at His15, which limits accumulation of HPr(Ser)~P.  相似文献   

16.
17.
BackgroundThe phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes.MethodsWe obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR).ResultsSecondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules.ConclusionsAlthough HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity.General significanceHPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.  相似文献   

18.
19.
Listeria monocytogenes is a gram-positive bacterium whose carbohydrate metabolic pathways are poorly understood. We provide evidence for an inducible phosphoenolpyruvate (PEP):fructose phosphotransferase system (PTS) in this pathogen. The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction. Fructose-1-phosphate kinase then converts the product of the PTS reaction to fructose-1,6-bisphosphate. HPr was shown to be phosphorylated by [32P]PEP and enzyme I as well as by [32P]ATP and a fructose-1,6-bisphosphate-activated HPr kinase like those found in other gram-positive bacteria. Enzyme I, HPr, and the enzyme II complex of the Listeria PTS exhibit enzymatic cross-reactivity with PTS enzyme constituents from Bacillus subtilis and Staphylococcus aureus.  相似文献   

20.
The Staphylococcus xylosus gene hprK, encoding HPr kinase (HPrK), has been isolated from a genomic library. The HPrK enzyme, purified as a His(6) fusion protein, phosphorylated HPr, the phosphocarrier protein of the bacterial phosphotransferase system, at a serine residue in an ATP-dependent manner, and it also catalyzed the reverse reaction. Therefore, the enzyme constitutes a bifunctional HPr kinase/phosphatase. Insertional inactivation of the gene in the genome of S. xylosus resulted in the concomitant loss of both HPr kinase and His serine-phosphorylated-HPr phosphatase activities in cell extracts, strongly indicating that the HPrK enzyme is also responsible for both reactions in vivo. HPrK deficiency had a profound pleiotropic effect on the physiology of S. xylosus. The hprK mutant strain showed a severe growth defect in complex medium upon addition of glucose. Glucose uptake in glucose-grown cells was strongly enhanced compared with the wild type. Carbon catabolite repression of three tested enzyme activities by glucose, sucrose, and fructose was abolished. These results clearly demonstrate the prominent role of HPr kinase in global control to adjust catabolic capacities of S. xylosus according to the availability of preferred carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号