首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolae, discovered by electron microscope in the 1950s, are membrane invaginations that accommodate various molecules that are involved in cellular signaling. Caveolin, a major protein component of caveolae identified in 1990s, has been known to inhibit the function of multiple caveolar proteins, such as kinases, which are involved in cell growth and proliferation, and thus considered to be a general growth signal inhibitor. Recent studies using transgenic mouse models have suggested that insulin signal may be exempted from this inhibition, which rather requires the presence of caveolin for proper signaling. Caveolin may stabilize insulin receptor protein or directly stimulate insulin receptors. Other studies have demonstrated that caveolae provide the TC10 complex with cellular microdomains for glucose transportation through Glut4. These findings suggest that caveolin plays an important role in insulin signal to maintain glucose metabolism in intact animals. However, the role of caveolin in insulin signal may differ from that in other transmembrane receptor signals.  相似文献   

2.
The insulin/TOR pathway is a conserved regulator of cell and organism growth in metazoans. Over the last several years, an array of signaling inputs to this pathway has been defined. However the growth-regulatory outputs are less clear. Drosophila has proven to be a powerful genetic model system in which to study insulin/TOR signaling. This review highlights recent studies in Drosophila that have identified essential outputs and key effectors of the pathway. These include the regulation of ribosome synthesis, mRNA translation, autophagy and endocytosis, through downstream effectors such as Myc, FOXO, HIF1-alpha, TIF-IA, 4EBP and Atg1. This network of outputs and effectors can regulate cell and organismal metabolism, and is essential for the control of tissue growth, responses to starvation and stress, and aging. The mechanisms identified in Drosophila likely operate in most metazoans, and are relevent to our understanding of diseases caused by aberrent insulin/TOR signaling such as cancer, diabetes and obesity.  相似文献   

3.
Insulin regulates a wide range of metabolic processes in mammals, such as homeostasis and the breakdown of glucose. Recently, the existence of an insulin-related growth factor in maize (ZmIGF) and a possible receptor for this growth factor has been reported. This peptide exerts effects on plant growth and promotes germination by activating the target of rapamycin (TOR) signaling pathways, which is similar to the insulin response in mammals. In this study, we analyzed the insulin response in maize embryos using a proteomic approach. Our results indicated that insulin modulates the expression of proteins involved in processes, such as storage protein degradation, protein processing, redox and desiccation stress, and glucose metabolism. The involvement of TOR signaling pathways was analyzed using the TOR inhibitor, rapamycin. The results showed that the modulation of these proteins by insulin is independent of the TOR pathway. These results indicated that insulin promotes changes in metabolism-related proteins to ensure successful germination in maize.  相似文献   

4.
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin‐mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin‐signaling pathway. The molecular determinants of the insulin‐signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals—yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin‐mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes.  相似文献   

5.
The insulin/insulin‐like growth factor‐1 (IGF‐1) signaling (IIS) pathway is a pivotal genetic program regulating cell growth, tissue development, metabolic physiology, and longevity of multicellular organisms. IIS integrates a fine‐tuned cascade of signaling events induced by insulin/IGF‐1, which is precisely controlled by post‐translational modifications. The ubiquitin/proteasome‐system (UPS) influences the functionality of IIS through inducible ubiquitylation pathways that regulate internalization of the insulin/IGF‐1 receptor, the stability of downstream insulin/IGF‐1 signaling targets, and activity of nuclear receptors for control of gene expression. An age‐related decline in UPS activity is often associated with an impairment of IIS, contributing to pathologies such as cancer, diabetes, cardiovascular, and neurodegenerative disorders. Recent findings identified a key role of diverse ubiquitin modifications in insulin signaling decisions, which governs dynamic adaption upon environmental and physiological changes. In this review, we discuss the mutual crosstalk between ubiquitin and insulin signaling pathways in the context of cellular and organismal homeostasis.  相似文献   

6.
胰岛素受体底物家族与Ⅱ型糖尿病   总被引:1,自引:0,他引:1  
胰岛素受体底物(insulin receptor substrate,IRS)家族是胰岛素/类胰岛素生长因子信号系统上游通路的关键介导者,在维持细胞生长、分裂和代谢中起着重要作用。已有四个成员被鉴定出:IRS-1、IRS-2、IRS-3和IRS-4,其中IRS-1和IRS-2在许多不同的组织细胞中起着特异性作用。IRS介导的胰岛素信号通路与很多其他信号通路存在交叉,它们能干扰胰岛素发挥效应,导致胰岛素抵抗,从而引发糖尿病。  相似文献   

7.
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.  相似文献   

8.
9.
Insulin, insulin like growth factor (IGF)-1, and AMP-activated protein kinase (AMPK) signaling regulate independently angiogenesis through vascular endothelial growth factor (VEGF) expression. In the present study, we investigated a potential cross-talk between these signaling pathways on hypoxia-inducible factor (HIF)-1alpha and VEGF expression. Retinal epithelial ARPE-19 cells were treated with AICAR, an AMPK activator, alone or in combination with insulin and IGF-1. AICAR stimulated VEGF mRNA expression, but did not modify the insulin- and IGF-1-induced VEGF expression. We have investigated the effect of AICAR on insulin and IGF-1 signaling pathways. We observed that AICAR increased insulin- and IGF-1-induced phosphorylation of PKB, whereas phosphorylation of S6K-1 was decreased. Moreover, AICAR and metformin inhibited the ability of insulin and IGF-1 to induce HIF-1alpha expression. These results show that AICAR and insulin/IGF-1 regulate VEGF expression through different mechanisms.  相似文献   

10.
Insulin is an essential hormone for cell growth and potentiates the mitogenic actions of multiple growth factors, including EGF. While potentiation has been shown to be mediated by the upregulation of the cyclin/CDK system, the upstream mechanisms of such synergy have not been elucidated. Our study has examined whether insulin could mediate synergy by enhancing early signaling events of the EGF receptor (EGFR). Tyrosine phosphorylation at the cell periphery of confluent Swiss 3T3 fibroblasts induced by EGF was potentiated by insulin within 2 min of stimulation. Insulin potentiation of EGF-mediated phosphorylation of the EGFR occurred 2 min after stimulation. EGFR transactivation by insulin was not observed. In addition, downstream mitogenic signaling events including ERK1/2 activation and Elk-1 phosphorylation were enhanced in response to insulin and EGF coadministration. This study shows mitogenic synergy between insulin and EGF can occur at the earliest signaling event, receptor phosphorylation, and independent of transactivation.  相似文献   

11.
Vanadium is a trace element present in practically all cells in plants and animals. It exerts interesting actions in living systems. At pharmacological doses, vanadium compounds display relevant biological actions such as mimicking insulin and growth factors as well as having osteogenic activity. Some vanadium compounds also show antitumoral properties. The importance of vanadium in bone arises from the studies developed to establish the essentiality of this element in animals and humans. Bone tissue, where the element seems to play an important role, accumulates great amounts of vanadium. This paper reviews the physiology of osteoblasts, the involvement of different growth factors on bone development, and the effects of vanadium derivatives on the skeletal system of animal models and bone-related cells. Two cellular lines are discussed in particular; one derived from a rat osteosarcoma (UMR106) and the other is a nontransformed osteoblast cell line (MC3T3-E1). The effects of different growth factors and their mechanisms of action in these cellular lines are reviewed. These models of osteoblasts are especially useful in understanding the intracellular signaling pathways of vanadium derivatives in hard tissues. Vanadium uses an intricate interplay of intracellular mechanisms to exert different biochemical and pharmacological actions. The effects of vanadium derivatives on some cellular signaling pathways related to insulin are compiled in this review. The comprehension of these intracellular signaling pathways may facilitate the design of vanadium compounds with promising therapeutic applications as well as the understanding of secondary side effects derived from the use of vanadium as a therapeutic agent.  相似文献   

12.
Insulin resistance contributes to a number of metabolic disorders, including type II diabetes, hypertension, and atherosclerosis. Cytokines, such as tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6, and hormones, such as growth hormone, are known to cause insulin resistance, but the mechanisms by which they inhibit the cellular response to insulin have not been elucidated. One mechanism by which these agents could cause insulin resistance is by inducing the expression of cellular proteins that inhibit insulin receptor (IR) signaling. Suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine signaling pathways, the expression of which is regulated by certain cytokines. SOCS proteins are therefore attractive candidates as mediators of cytokine-induced insulin resistance. We have found that SOCS-1 and SOCS-6 interact with the IR when expressed in human hepatoma cells (HepG2) or in rat hepatoma cells overexpressing the human IR. In SOCS-1-expressing cells, insulin treatment increases the extent of interaction with the IR, whereas in SOCS-6-expressing cells the association with the IR appears to require insulin treatment. SOCS-1 and SOCS-6 do not inhibit insulin-dependent IR autophosphorylation, but both proteins inhibit insulin-dependent activation of ERK1/2 and protein kinase B in vivo and IR-directed phosphorylation of IRS-1 in vitro. These results suggest that SOCS proteins may be inhibitors of IR signaling and could mediate cytokine-induced insulin resistance and contribute to the pathogenesis of type II diabetes.  相似文献   

13.
顾世红  陈建国 《昆虫知识》2009,46(4):501-508
胰岛素及其信号转导的探讨为当代生物学一大热点,研究显示:从线虫到果蝇、小鼠及其人类其胰岛素信号转导路径十分类似。昆虫胰岛素的研究开始于家蚕,在20世纪80年代,日本学者在分离家蚕促前胸腺激素(prothoracictropic hormone,简称PTTH)时,发现所纯化的为一称为家蚕素的神经激素,该激素之氨基酸排列顺序与高等动物体内的胰岛素部分相似,但是家蚕素的生理功能至今仍不是很清楚。而果蝇的分子遗传学研究则显示,胰岛素及其信号转导调控果蝇的生长、发育、寿命等许许多多的生理现象。专一性地改变果蝇前胸腺之胰岛素信号转导,会严重影响幼虫的蜕皮与变态。而作者利用家蚕所进行的研究更显示,将牛的胰岛素注射于家蚕幼虫体内可显着提高其蜕皮激素的分泌,离体培养前胸腺时加入牛胰岛素也可直接增加其激素的分泌,牛胰岛素可直接活化家蚕前胸腺细胞之胰岛素受体及信号分子Akt的磷酸化。另外,从线虫、果蝇到小鼠胰岛素及其信号转导突变体的研究结果显示了胰岛素信号转导调控寿命的重要性。利用猴子及人所进行的研究结果显示,低卡路里摄取之所以会延长寿命是因为卡路里的摄取与胰岛素信号转导的变化有关。因此,不同物种利用相同的胰岛素信号转导通路调控发育及老化机制,该发现大大鼓舞了科学家们利用低等的生物来研究复杂的生命现象。  相似文献   

14.
Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.  相似文献   

15.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.  相似文献   

16.
The insulin receptor (IR) is expressed ubiquitously in various tissues, where insulin exerts various biological effects on the target cells, such as cellular metabolic changes, cell proliferation and differentiation. Therefore, mimicry of insulin signaling would be a promising strategy to realize artificial control of such cellular fates. In this study, we constructed an antibody/insulin receptor chimera that enables to utilize any antigen as the ligand in principle. We constructed chimeric receptors consisting of anti-fluorescein single chain Fv (scFv), the extracellular D2 domain of erythropoietin receptor and the transmembrane/intracellular domains of IR (scFv-IR; S-IR). The function of S-IR was evaluated in terms of growth signal transduction in murine pro-B Ba/F3 cells and murine fibroblast NIH/3T3 cells. S-IR exerted IL-3-independent cell growth in Ba/F3 cells, while NIH/3T3 cells expressing S-IR acquired growth advantage over parental NIH/3T3 cells in a low-serum condition. S-IR induced phosphorylation of S-IR itself and key signaling molecules downstream of IR. Although antigen-independent activation was significantly observed, S-IR enabled specific amplification of the gene-transduced cells.  相似文献   

17.
Subcellular compartmentalization has become an important theme in cell signaling. In particular, the Golgi apparatus (GA) plays a prominent role in compartmentalizing signaling cascades that originate at the plasma membrane or other organelles. To precisely regulate this process, cells have evolved a unique class of organizer proteins, termed “scaffold proteins”. Sef, PAQR3, PAQR10 and PAQR11 are scaffold proteins that have recently been identified on the GA and are referred to as Golgi scaffolds. The major cell growth signaling pathways, such as Ras/MAPK, PI3K/AKT, insulin and VEGF (vascular endothelial growth factor), are tightly regulated spatially and temporally by these Golgi scaffolds to ensure a physiologically appropriate outcome. Here, we discuss the subcellular localization and characterization of the topology and functional domains of these Golgi scaffolds and summarize their roles in the compartmentalization of cell signaling. We also highlight the physiological and pathological roles of these Golgi scaffolds in tumorigenesis and developmental disorders.  相似文献   

18.
Stern D 《Current biology : CB》2003,13(7):R267-R269
Insulin signaling controls organ growth and final body size in insects. Recent results have begun to clarify how insulin signaling drives organ growth to match nutrient levels, but have not yet elucidated how insulin signaling controls final body size.  相似文献   

19.
Studies in Drosophila have characterized insulin receptor/phosphoinositide 3-kinase (Inr/PI3K) signaling as a potent regulator of cell growth, but its function during development has remained uncertain. Here we show that inhibiting Inr/PI3K signaling phenocopies the cellular and organismal effects of starvation, whereas activating this pathway bypasses the nutritional requirement for cell growth, causing starvation sensitivity at the organismal level. Consistent with these findings, studies using a pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion as an indicator for PI3K activity show that PI3K is regulated by the availability of dietary protein in vivo. Hence we surmise that an essential function of insulin/PI3K signaling in Drosophila is to coordinate cellular metabolism with nutritional conditions.  相似文献   

20.
Obesity-linked type 2 diabetes is a disease of insulin resistance combined with pancreatic beta-cell dysfunction. Although a role for beta-cell mass in the pathogenesis of obesity-linked type 2 diabetes has recently gained prominence, the idea is still being developed. It is proposed that in early obesity an increase in beta-cell mass and function might compensate for peripheral insulin resistance. However, as time and/or the severity of the obesity continue, there is decay in such adaptation and the beta-cell mass becomes inadequate. This, together with beta-cell dysfunction, leads to the onset of type 2 diabetes. It is becoming evident that elements in insulin and insulin growth factor (IGF)-1 signal-transduction pathways are key to regulating beta-cell growth. Current evidence indicates that interference of insulin signaling in obesity contributes to peripheral insulin resistance. This article examines whether a similar interference of IGF-1 signaling in the beta-cell could hinder upregulation of beta-cell mass and/or function, resulting in a failure to compensate for insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号