首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in skin elasticity have been analyzed under different conditions (upon skin stretching, at different thickness of the skin, at different contents of collagen, intercellular and endocellular liquids, upon changes of venous pressure, and during contraction and relaxation of smooth muscles in skin vessels - vasomotions). Elasticity was defined by the acoustic method from the speed of diffusion of a superficial sheared acoustic wave in the skin, by the autoresonant method from the mechanical resonance frequency of skin, and from the vacuum pressure needed for skin site deformation of constant volume. It was shown that the major factors determining the elasticity of skin are it stretching, thickness, and the contents of collagen and liquids in it. The influence on elasticity of venous pressure and the contraction activity of smooth muscles in vessels is not essential. This suggests that the parameters of skin elasticity can be used as indicators of systemic and local lesions of the connective tissue.  相似文献   

2.
The effects of stretching of the skin on its collagen content and thickness have been studied in a group of subjects with chronic obesity. Despite the increase in skin surface a normal skin thickness, collagen content, and density were maintained. It is concluded that the skin stretching induced by prolonged obesity led to hypertrophy of collagen and that this had maintained both skin thickness and collagen content. It is not known whether this is due to enhanced synthesis or decreased degradation.  相似文献   

3.
The aim of the study was to investigate the relative contributions of geometrical and material factors to overall left-ventricular cavity stiffness. Left-ventricular cavity shapes were reconstructed using a computer and the variation of myocardial elastic modulus was calculated, by the finite element method, through the passive phase of diastole when rising volume coincided with rising pressure. Geometric data were obtained from biplane cineangiography, with micromanometer pressure measurements, for ten patients with left ventricular disease. Dimensional analysis was applied to the initial and derived data from which the influences of myocardial compliance, wall thickness-to-long dimension ratio, and aspect ratio (long-to-short axes) were determined. The ratio between the volume elasticity and the myocardial modulus of elasticity, the normalized stiffness ratio (NSR), is proposed as a useful index of left ventricular mechanical behaviour in diastole. The volume elasticity of the chamber is dependent not only upon the myocardium elastic modulus and the wall thickness ratio, but also on the shape of the chambe. Changes in the thickness/radius ratio of the ventricle have less effect upon its distention than those in the long dimension/radius ratio. The left ventricle becomes more spherical in shpae through diastole and hence becomes stiffer by this geometric mechanism.  相似文献   

4.
Postburn hypertrophic scar commonly occurs among the Chinese resulting from serious burn injuries. A non-invasive method of preventing and controlling such scars is using pressure therapy. Its mechanical properties are used as a quantitative indicator for scar assessment and maturation. The non-linear properties of the skin tissue are characterised in this study by a modulus of elasticity and a percentage extension (strain) at load intensities of 20, 40 and 100 g. The latter is a measure of the scar extensibility while the former the scar stiffness. A correlation is obtained between the clinical scar grading and these mechanical properties. Altogether 300 individual measurements were made on fifteen Chinese patients of ages ranging from 18 to 44 with burn injuries of superficial to whole skin thickness burns which necessitated surgical graft procedures. This in vivo study of the mechanical properties of hypertrophic scar tissue lasted 2 yr.  相似文献   

5.
微针阵列作为新型透皮给药技术,受到广泛关注。通常以刺入力、刺入率和刺入深度来评价微针刺入皮肤的程度和效率。皮肤是其性能评价的基础。皮肤的物理特性主要由角蛋白丝、胶原纤维、弹性纤维和皮下组织综合决定,并且从厚度、弹性、硬度和韧性等维度反映其对微针刺入的影响。机械的、渗透的、组织的和屏障的等皮肤模型被用于解读和模拟真实皮肤的该方面功能。同样,通过皮肤力学分析后建立的包括本构模型在内的各种皮肤力学模型也从物理维度解析皮肤的力学特征。真实皮肤具有复杂性,存在差异性大、不易获取和储存,以及伦理等问题,而皮肤模型可在一定程度上代替真实皮肤辅助微针递送系统设计、开发和性能评价。本文系统回顾分析了皮肤组织的物理特性、各种皮肤模型的制备及特点、真实皮肤和模拟皮肤在评价微针穿刺性能方面的应用,为开发及建立合适的皮肤模型提供借鉴。  相似文献   

6.
The physical, chemical, and biochemical factors that accelerate skin aging have been proposed to activate a self-maintained microinflammatory process, one of the expected end results of which is an imbalance in the turnover of macromolecules in the dermis. Surface peroxides are recognized as controllable factors of skin aging, and their accumulation is attributed to environmentally induced impairment of defense enzymes. Topical application of antioxidants decreases the rate at which skin elasticity and skin thickness are modified.  相似文献   

7.
8.
Summary The influence of tissue section thickness on the color and intensity of birefringence displayed by collagen in tissue sections studied by means of the Picrosirius-polarization method, is reported in this paper. When dermal collagen sections of different thicknesses (ranging from 0.25 to 11 m) were studied by this method, it became evident that not only did the intensity of birefringence increase proportionally to tissue section thickness, as was to be expected, but also a gradual shift in color from green through yellow to red could be observed as tissue section thickness increased. The limitations of the Picrosirius-polarization method for the localization of collagen types I, II, and III in routinely used histological slides is discussed, showing that this method is useful for the study of the distribution of the different types of interstitial collagen in normal adult vertebrate organs.  相似文献   

9.
Skin fibrosis is characterized by activated fibroblasts and an altered architecture of the extracellular matrix. Excessive deposition of extracellular matrix proteins and altered cytokine levels in the dermal collagen matrix are common to several pathological situations such as localized scleroderma and systemic sclerosis, keloids, dermatosclerosis associated with venous ulcers and the fibroproliferative tissue surrounding invasively growing tumors. Which factors contribute to altered organization of dermal collagen matrix in skin fibrosis is not well understood. We recently demonstrated that cartilage oligomeric matrix protein (COMP) functions as organizer of the dermal collagen I network in healthy human skin (Agarwal et al., 2012). Here we show that COMP deposition is enhanced in the dermis in various fibrotic conditions. COMP levels were significantly increased in fibrotic lesions derived from patients with localized scleroderma, in wound tissue and exudates of patients with venous leg ulcers and in the fibrotic stroma of biopsies from patients with basal cell carcinoma. We postulate enhanced deposition of COMP as one of the common factors altering the supramolecular architecture of collagen matrix in fibrotic skin pathologies. Interestingly, COMP remained nearly undetectable in normally healing wounds where myofibroblasts transiently accumulate in the granulation tissue. We conclude that COMP expression is restricted to a fibroblast differentiation state not identical to myofibroblasts which is induced by TGFβ and biomechanical forces.  相似文献   

10.
To study how collagen synthesis is regulated in developing chick embryonic skin, hydroxyproline synthesis, incorporation of proline, and translational activity and content of collagen mRNA in 12-, 15-, and 18-day skins were determined and compared with each other. Hydroxyproline synthesis in the 18-day skins was markedly increased over that in the 12-day skins, whereas proline incorporation was moderately increased. The increase in collagen synthesis from day 15 to 18 was accompanied by increases in both the translational activity and the content of type I procollagen mRNA, with a selective increase in the lower-molecular-weight species of pro alpha 1 (I) collagen mRNA. In contrast, the stimulation of collagen synthesis from day 12 to day 15 did not parallel the levels of type I procollagen mRNA. These results suggest that the stimulation of collagen synthesis is regulated by collagen mRNA levels only in the later stage of development (from day 15 to day 18). Both the collagen synthesis and type I procollagen mRNA levels in the fibroblasts isolated on each corresponding day were constant. The difference in collagen synthesis under two different culture conditions suggests that cell-matrix interaction and/or some serum factors, including several growth factors, are essential for the marked stimulation of collagen synthesis observed in 12- to 18-day skin.  相似文献   

11.
Intrinsic skin ageing is characterized by atrophy and loss of elasticity. Although the skin hypertrophy induced by photoageing has been studied, the molecular mechanisms of skin atrophy during ageing remain unclear. Here, we report that copper/zinc superoxide dismutase (CuZn-SOD)-deficient mice show atrophic morphology in their skin. This atrophy is accompanied by the degeneration of collagen and elastic fibers, and skin hydroxyproline is also significantly reduced in deficient mice. These imply that the dysfunction of collagen and elastin biosynthesis are involved in the progression of skin thinning. Furthermore, transdermal administration of a vitamin C derivative which can permeate through the membrane, completely reversed the skin thinning and deterioration of collagen and elastin in the mutant mice. These indicate that the vitamin C derivative is a powerful agent for alleviating skin ageing through regeneration of collagen and elastin. The CuZn-SOD-deficient mice might be applicable to evaluation of therapeutic medicines against skin ageing.  相似文献   

12.
Classically skin defects are covered by split thickness skin grafts or by means of local or regional skin flaps. In the presented case series for the first time a bilayered, non-crossed-linked collagen matrix has been used in an off-label fashion in order to reconstruct facial skin defects following different types of skin cancer resection. The material is of porcine origin and consists of a spongy and a compact layer. The ratio of the two layers is 1:3 in favour of the spongy layer. The aim of the study was to investigate the potential of this matrix for skin regeneration as an alternative to the standard techniques of skin grafts or flaps. Six patients between 39 and 83 years old were included in the study based on a therapeutic trial. The collagen matrix was used in seven defects involving the nose, eyelid, forehead- and posterior scalp regions, and ranging from 1,2 to 6 cm in diameter. Two different head and neck surgeons at two different institutions performed the operations. Each used a different technique in covering the wound following surgery, i.e. with and without a latex-based sheet under the pressure dressing. In three cases cylindrical biopsies were taken after 14 days. In all cases the biomaterial application was performed without any complication and no adverse effects were observed. Clinically, the collagen matrix contributed to a tension-free skin regeneration, independent of the wound dressing used. The newly regenerated skin showed strong similarity to the adjacent normal tissue both in quality and colour. Histological analysis indicated that the spongy layer replaced the defective connective tissue, by providing stepwise integration into the surrounding implantation bed, while the compact layer was infiltrated by mononuclear cells and contributed to its epithelialization by means of a ?conductive“process from the surrounding epithelial cells. The clinical and histological data demonstrate that the collagen bilayered matrix used in this series contributes to a ?Guided-Integrative-Regeneration-Process“, which still needs to be further understood. The biomimetic nature of this material seems to contribute to physiological matrix remodelling, which probably involves other matricellular proteins essential for soft tissue regeneration. A deeper understanding of the mechanism, involved in the tissue integration of this material and its contribution to soft tissue regeneration based on the direct and indirect effect of matricellular proteins could open new therapeutic avenues for biomaterial-based soft tissue regeneration as an alternative to traditional flap-based plastic surgery.  相似文献   

13.
The effects of three-month dietary xylitol supplementation on the amounts and hexose contents of acid-soluble collagen as well as on the amounts and fluorescence of collagenase-soluble collagen were studied in healthy and streptozotocin-diabetic male rats. Collagen was extracted from skin samples. In the healthy rats, supplementation with xylitol (10%) increased the hydroxyproline content of the acid-soluble fraction and skin thickness. In diabetic rats receiving and not receiving xylitol, the acid-soluble collagen fraction was markedly lower than in healthy rats. However, its amount was significantly elevated when xylitol had been added to the diet. Supplementation with xylitol caused no changes in the amounts of collagenase-soluble fraction in either healthy or diabetic rats. Supplementation with xylitol (10%) significantly decreased the hexose content of acid-soluble collagen and the fluorescence of the collagenase-soluble fraction in both healthy and diabetic rats. The results indicate that dietary xylitol affects collagen synthesis and collagen glycosylation.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen and glycosaminoglycan (GAG) biosynthesis in tissues. IGF-I activity is modulated by a family of IGF-binding proteins (IGFBPs) with different IGF-I binding affinities. At least IGFBP-1 and IGFBP-2 are known as inhibitors of IGF functions. Some IGFBPs (IGFBP-1, IGFBP-3 and IGFBP-5) may undergo phosphorylation that dramatically increase their affinity for IGF. During fasting of animals there is a significant decrease of the collagen and GAG content of the skin, accompanied by a reduction of plasma IGF-I levels. However, in previous studies we showed that in the skin of fasted rats IGF-I as well as IGFBP-1 and IGFBP-2 expressions were not different, compared to control rat skin, although collagen content was significantly decreased. In the present study we show that fasted rat skin contains similar amounts of IGF-I, IGFBP-3 and IGFBP-1, although extract from fasted rat skin induced inhibition of collagen biosynthesis in cultured fibroblasts, compared to control rat skin extract. Western immunoblot analysis of control and fasted rat skin extracts, using anti-phosphoserine antibodies for immunoprecipitated IGFBP-1 and IGFBP-3, revealed that both proteins are present in phosphorylated form. Although no differences were found in the expression of phosphorylated IGFBP-3 between control and fasted rat skins, that of phosphorylated IGFBP-1 in fasted rat skin extract was higher than in control one. We suggest that there is an increased level of IGFBP-1 phosphoisoform in fasted rat skin, associated with increased affinity for IGF-I. The increase of phosphorylated IGFBP-1 in fasted rat skin tissue may augment IGF-I binding affinity for IGF and decrease its bioavailability for receptor interaction. This mechanism may prevent IGF-I dependent stimulation of fibroblasts to produce extracellular matrix components. The specific expression of IGFBPs and their phosphoisoforms in tissues may play an important role in regulation of IGF-I action during physiologic and pathologic responses.  相似文献   

15.
Pythons are unique amongst snakes in having different pressures in the aortas and pulmonary arteries because of intraventricular pressure separation. In this study, we investigate whether this correlates with different blood vessel strength in the ball python Python regius. We excised segments from the left, right, and dorsal aortas, and from the two pulmonary arteries. These were subjected to tensile testing. We show that the aortic vessel wall is significantly stronger than the pulmonary artery wall in P. regius. Gross morphological characteristics (vessel wall thickness and correlated absolute amount of collagen content) are likely the most influential factors. Collagen fiber thickness and orientation are likely to have an effect, though the effect of collagen fiber type and cross‐links between fibers will need further study. J. Morphol. 276:1412–1421, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
ABSTRACT

The skin protects our body from various external factors, such as chemical and physical stimuli, microorganisms, and sunlight. Sunlight is a representative environmental factor that considerably influences the physiological activity of our bodies. The molecular mechanisms and detrimental effects of ultraviolet rays (UVR) on skin have been thoroughly investigated. Chronic exposure to UVR generally causes skin damage and eventually induces wrinkle formation and reduced elasticity of the skin. Several studies have shown that infrared rays (IR) also lead to the breakdown of collagen fibers in the skin. However, several reports have demonstrated that the appropriate use of UVR or IR can have beneficial effects on skin-related diseases. Additionally, it has been revealed that visible light of different wavelengths has various biological effects on the skin. Interestingly, several recent studies have reported that photoreceptors are also expressed in the skin, similar to those in the eyes.

Based on these data, I discuss the various physiological effects of sunlight on the skin and provide insights on the use of phototherapy, which uses a specific wavelength of sunlight as a non-invasive method, to improve skin-related disorders.  相似文献   

17.
Mechanical environment is one of the regulating factors involved in the process of longitudinal bone growth. Non-physiological compressive loading can lead to infantile and juvenile musculoskeletal deformities particularly during growth spurt. We hypothesized that tissue mechanical behavior in sub-regions (reserve, proliferative and hypertrophic zones) of the growth plate is related to its collagen and proteoglycan content as well as its collagen fiber orientation. To characterize the strain distribution through growth plate thickness and to evaluate biochemical content and collagen fiber organization of the three histological zones of growth plate tissue. Distal ulnar growth plate samples (N = 29) from 4-week old pigs were analyzed histologically for collagen fiber organization (N = 7) or average zonal thickness (N = 8), or trimmed into the three average zones, based on the estimated thickness of each histological zone, for biochemical analysis of water, collagen and glycosaminoglycan content (N = 7). Other samples (N = 7) were tested in semi-confined compression under 10 % compressive strain. Digital images of the fluorescently labeled nuclei were concomitantly acquired by confocal microscopy before loading and after tissue relaxation. Strain fields were subsequently calculated using a custom-designed 2D digital image correlation algorithm. Depth-dependent compressive strain patterns and collagen content were observed. The proliferative and hypertrophic zone developed the highest axial and transverse strains, respectively, under compression compared to the reserve zone, in which the lowest axial and transverse strains arose. The collagen content per wet mass was significantly lower in the proliferative and hypertrophic zones compared to the reserve zone, and all three zones had similar glycosaminoglycan and water content.Polarized light microscopy showed that collagen fibers were mainly organized horizontally in the reserve zone and vertically aligned with the growth direction in the proliferative and hypertrophic zones. Higher strains were developed in growth plate areas (proliferative and hypertrophic) composed of lower collagen content and of vertical collagen fiber organization. The stiffer reserve zone, with its higher collagen content and collagen fibers oriented to restrain lateral expansion under compression, could play a greater role of mechanical support compared to the proliferative and hypertrophic zones, which could be more susceptible to be involved in an abnormal growth process.  相似文献   

18.
Collagen is critical for skin strength and elasticity, and its degradation leads to wrinkles that accompany aging. Based emphasis on the aesthetics, we tried to make a new compound that can highly stimulate collagen biosynthesis and synthesized ascorbyl conjugated peptide that is a complex form connected by succinoyl linker. We conducted several in vitro and in vivo experiments to identify if the compound has a potent activity, comparing to the ascorbic acid only for collagen biosynthesis. Our in vitro and in vivo result identified that ascorbyl conjugated peptide can stimulate collagen biosynthesis in human dermis and is assumably stable in the rat skin extracts. In conclusion, we strongly suggest that ascorbyl conjugated peptide can be used as a main ingredient for cosmetic products as well as wound healing agents.  相似文献   

19.
The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号