首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imaging of the membrane surface of MDCK cells by atomic force microscopy.   总被引:10,自引:2,他引:8  
The membrane surface of polarized renal epithelial cells (MDCK cells) grown as a monolayer was imaged with the atomic force microscope. The surface topography of dried cells determined by this approach was consistent with electron microscopy images previously reported. Fixed and living cells in aqueous medium gave more fuzzy images, likely because of the presence of the cell glycocalix. Treatment of living cells with neuraminidase, an enzyme that partly degrades the glycocalix, allowed sub-micrometer imaging. Protruding particles, 10 to 60 nm xy size, occupy most of the membrane surface. Protease treatment markedly reduced the size of these particles, indicating that they corresponded to proteins. Tip structure effects were probably involved in the exaggerated size of imaged membrane proteins. Although further improvements in the imaging conditions, including tip sharpness, are required, atomic force microscope already offers the unique possibility to image proteins at the membrane surface of living cells.  相似文献   

2.
We have developed a hybrid scanning ion conductance and scanning near-field optical microscope for the study of living cells. The technique allows quantitative, high-resolution characterization of the cell surface and the simultaneous recording of topographic and optical images. A particular feature of the method is a reliable mechanism to control the distance between the probe and the sample in physiological buffer. We demonstrate this new method by recording near-field images of living cells (cardiac myocytes).  相似文献   

3.
《The Journal of cell biology》1983,97(4):1089-1097
Magnetic sphere viscoelastometry, video microscopy, and the Kamiya double chamber method (Kamiya, N., 1940, Science [Wash. DC], 92:462- 463.) have been combined in an optical and rheological investigation of the living endoplasm of Physarum polycephalum. The rheological properties examined were yield stress, viscosity (as a function of shear), and elasticity. These parameters were evaluated in directions perpendicular; (X) and parallel (Y) to the plasmodial vein. Known magnetic forces were used for measurements in the X direction, while the falling ball technique was used in the Y direction (Cygan, D.A., and B. Caswell, 1971, Trans. Soc. Rheol. 15:663-683; MacLean-Fletcher, S.D., and T.D. Pollard, 1980, J. Cell Biol., 85:414-428). Approximate yield stresses were calculated in the X and Y directions of 0.58 and 1.05 dyn/cm2, respectively. Apparent viscosities measured in the two directions (eta x and eta y) were found to fluctuate with time. The fluctuations in eta x and eta y were shown, statistically, to occur independently of each other. Frequency correlation with dynamoplasmograms indicated that these fluctuations probably occur independently of the streaming cycle. Viscosity was found to be a complex function of shear, indicating that the endoplasm is non- Newtonian. Plots of shear stress vs. rate of shear both parallel and perpendicular to the vein, showed that endoplasm is not a shear thinning material. These experiments have shown that living endoplasm of Physarum is an anisotropic viscoelastic fluid with a yield stress. The endoplasm appears not to be a homogeneous material, but to be composed of heterogeneous domains.  相似文献   

4.
The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions.  相似文献   

5.
Advances in microscopy have contributed to many biologic discoveries. Electron microscopic techniques such as cryo-electron tomography are remarkable tools for imaging the interiors of bacterial cells in the near-native state, whereas optical microscopic techniques such as fluorescence imaging are useful for following the dynamics of specific single molecules in living cells. Neither technique, however, can be used to visualize the structural dynamics of a single molecule at high resolution in living cells. In the present study, we used high-speed atomic force microscopy (HS-AFM) to image the molecular dynamics of living bacterial cell surfaces. HS-AFM visualizes the dynamic molecular processes of isolated proteins at sub-molecular resolution without the need for complicated sample preparation. In the present study, magnetotactic bacterial cells were anchored in liquid medium on substrate modified by poly-l-lysine and glutaraldehyde. High-resolution HS-AFM images of live cell surfaces showed that the bacterial outer membrane was covered with a net-like structure comprising holes and the hole rims framing them. Furthermore, HS-AFM captured the dynamic movement of the surface ultrastructure, showing that the holes in the net-like structure slowly diffused in the cell surface. Nano-dissection revealed that porin trimers constitute the net-like structure. Here, we report for the first time the direct observation of dynamic molecular architectures on a live cell surface using HS-AFM.  相似文献   

6.
Defocusing microscopy was used for real-time observation and quantification of membrane surface dynamics in murine bone marrow macrophages. Small random membrane fluctuations (SRMF), possibly metabolic driven, were detected uniformly over all membrane surface. Morphological and dynamical parameters of ruffles, such as shape, dimensions, and velocity of propagation, were analyzed. Optical tweezers were used to promote phagocytosis of single Leishmania amazonensis amastigotes by selected macrophages. Analysis of ruffling activity on the macrophages before and during phagocytosis of the parasites indicated that increased ruffling response near forming phagosomes, most likely induced by the parasite, accelerates phagocytosis. The effects of temperature decrease on the dynamics of membrane surface fluctuations and on the phagocytosis of parasites were used to determine the overall activation energies involved in these processes. The values obtained support the existence of strong correlation between membrane motility and phagocytic capacity.  相似文献   

7.
In living cells, variations in membrane orientation occur both in easily imaged large-scale morphological features, and also in less visualizable submicroscopic regions of activity such as endocytosis, exocytosis, and cell surface ruffling. A fluorescence microscopic method is introduced here to visualize such regions. The method is based on fluorescence of an oriented membrane probe excited by a polarized evanescent field created by total internal reflection (TIR) illumination. The fluorescent carbocyanine dye diI-C(18)-(3) (diI) has previously been shown to embed in the lipid bilayer of cell membranes with its transition dipoles oriented nearly in the plane of the membrane. The membrane-embedded diI near the cell-substrate interface can be fluorescently excited by evanescent field light polarized either perpendicular or parallel to the plane of the substrate coverslip. The excitation efficiency from each polarization depends on the membrane orientation, and thus the ratio of the observed fluorescence excited by these two polarizations vividly shows regions of microscopic and submicroscopic curvature of the membrane, and also gives information regarding the fraction of unoriented diI in the membrane. Both a theoretical background and experimental verification of the technique is presented for samples of 1) oriented diI in model lipid bilayer membranes, erythrocytes, and macrophages; and 2) randomly oriented fluorophores in rhodamine-labeled serum albumin adsorbed to glass, in rhodamine dextran solution, and in rhodamine dextran-loaded macrophages. Sequential digital images of the polarized TIR fluorescence ratios show spatially-resolved time-course maps of membrane orientations on diI-labeled macrophages from which low visibility membrane structures can be identified and quantified. To sharpen and contrast-enhance the TIR images, we deconvoluted them with an experimentally measured point spread function. Image deconvolution is especially effective and fast in our application because fluorescence in TIR emanates from a single focal plane.  相似文献   

8.
Membrane flow during pinocytosis. A stereologic analysis   总被引:103,自引:55,他引:48       下载免费PDF全文
HRP has been used as a cytochemical marker for a sterelogic analysis of pinocytic vesicles and secondary lysosomes in cultivated macrophages and L cells. Evidence is presented that the diaminobenzidine technique (a) detects all vaculoes containing encyme and (b) distinguishes between incoming pinocytic vesicles and those which have fused with pre-existing lysosomes to form secondary lososomes. The HRP reactive pinocytic vesicle spaces fills completely within 5 min after exposure to enzyme, while the secondary lysosome compartment is saturated in 45--60 min. The size distribution of sectioned (profile) vaculoe diameters was measured at equilibrium and converted to actual (spherical) dimensions using a technique modified from Dr. S. D. Wicksell. The most important findings in this study have to do with the rate at which pinocytosed fluid and surface membrane move into the cell and on their subsequent fate. Each minute macrophages form at least 125 pinocytic vesicles having a fractional vol of 0.43% of the cell's volume and a fractional area of 3.1% of the cell's surface area. The fractional volume and surface area flux rates for L cells were 0.05% and 0.8% per minute respectively. Macrophages and L cells thus interiorize the equivalent of their cell surface area every 33 and 125 min. During a 3-period, the size of the secondary lysosome compartment remains constant and represents 2.5% of the cell volume and 18% of the surface area. Each hour, therefore, the volume and surface area of incoming vesicles is 10 times greater than the dimensions of the secondary lysosomes in both macrophages and L cells. This implies a rapid reduction in vesicle size during the formation of the secondary lysosome and the egress of pinocytosed fluid from the vacuole and the cell. In addition, we postulate that membrane components of the vacuole are subsequently recycled back to the cell surface.  相似文献   

9.
The observation of low-frequency fluctuations of the cell membrane in erythrocytes and in several nucleated cells suggests that this phenomenon may be a general property of the living cell. A study of these fluctuations in human erythrocytes and its ghosts has now been carried out using a novel optical method based on point dark field microscopy. We have demonstrated that the reestablishment of membrane fluctuations in erythrocyte ghosts is dependent on MgATP but does not necessarily require the restoration of the biconcave shape. The results imply that the dominant component of membrane fluctuations are metabolically dependent and suggest the existence of a dynamic mechano-chemical coupling within the membrane skeleton network induced by MgATP.  相似文献   

10.
By adapting a laser scanning microscope with a titanium sapphire femtosecond pulsed laser and transmission optics, we are able to produce live cell images based on the nonlinear optical phenomenon of second harmonic generation (SHG). Second harmonic imaging (SHIM) is an ideal method for probing membranes of living cells because it offers the high resolution of nonlinear optical microscopy with the potential for near-total avoidance of photobleaching and phototoxicity. The technique has been implemented on three cell lines labeled with membrane-staining dyes that have large nonlinear optical coefficients. The images can be obtained within physiologically relevant time scales. Both achiral and chiral dyes were used to compare image formation for the case of single- and double-leaflet staining, and it was found that chirality plays a significant role in the mechanism of contrast generation. It is also shown that SHIM is highly sensitive to membrane potential, with a depolarization of 25 mV resulting in an approximately twofold loss of signal intensity.  相似文献   

11.
The ability to study the structure and function of cell membranes and membrane components is fundamental to understanding cellular processes. This requires the use of methods capable of resolving structures with nanometer-scale resolution in intact or living cells. Although fluorescence microscopy has proven to be an extremely versatile tool in cell biology, its diffraction-limited resolution prevents the investigation of membrane compartmentalization at the nanometer scale. Near-field scanning optical microscopy (NSOM) is a relatively unexplored technique that combines both enhanced spatial resolution of probing microscopes and simultaneous measurement of topographic and optical signals. Because of the very small nearfield excitation volume, background fluorescence from the cytoplasm is effectively reduced, enabling the visualization of nano-scale domains on the cell membrane with single molecule detection sensitivity at physiologically relevant packing densities. In this article we discuss technological aspects concerning the implementation of NSOM for cell membrane studies and illustrate its unique advantages in terms of spatial resolution, background suppression, sensitivity, and surface specificity for the study of protein clustering at the cell membrane. Furthermore, we demonstrate reliable operation under physiological conditions, without compromising resolution or sensitivity, opening the road toward truly live cell imaging with unprecedented detail and accuracy.  相似文献   

12.
An experimental verification of an optical microscope technique to create spatial map images of dynamically scattered light fluctuation decay rates is presented. The dynamic light scattering microscopy technique is demonstrated on polystyrene beads and living macrophage cells. With a slow progressive scan charge-coupled device camera employed in a streak-like mode, rapid intensity fluctuations with timescales the order of milliseconds can be recorded from these samples. From such streak images, the autocorrelation function of these fluctuations can be computed at each location in the sample. The characteristic decay times of the autocorrelation functions report the rates of motion of scattering centers. These rates show reasonable agreement to theoretically expected values for known samples with good signal/noise ratio. The rates can be used to construct an image-like spatial map of the rapidity of submicroscopic motions of scattering centers.  相似文献   

13.
A variant of the whole-cell patch clamp technique is described which allows measurement of whole-cell ionic currents in small cells while minimizing cell dialysis with the pipette solution. The technique involves the application of negative pressure to the inside of small (less than 1 micron) tip diameter pipettes placed on the cell surface to achieve high resistance seals and membrane rupture. The technique has been used successfully in a variety of different types of cells to study membrane currents carried by Ca and K, currents generated by exchange carriers as well as electrical coupling between cells. Overall, the technique seems well suited for the study of ionic currents in small cells, and provides an alternative to conventional patch clamping techniques which necessitate intracellular dialysis.  相似文献   

14.
A theory of membrane viscoelasticity developed by Evans and Hochmuth in 1976 is used to analyze the time-dependent recovery of an elongated cell. Before release, the elongated cell is the static equilibrium where external forces are balanced by membrane elastic force resultants. Upon release, the cell recovers its initial shape with a time-dependent exponential behavior characteristic of the viscoelastic solid model. It is shown that the model describes the time-dependent recovery process very well for a time constant in the range of 0.1-0.13 s. The time constant is the ratio membrane surface viscosity eta:membrane surface elasticity mu. Measurements for the shear modulus mu of 0.006 dyne/cm give a value for the surface viscosity of red cell membrane as a viscoelastic solid material of eta = mu tc = (6-8) X 10(-4) poise . cm.  相似文献   

15.
Y Takano  A Sakanishi 《Biorheology》1988,25(1-2):123-128
To consider the effects of the viscoelasticity of cytoplasm on the relaxation phenomenon of red blood cell suspensions, we calculate the complex intrinsic viscosity [eta*] = lim(eta* - eta)/eta c of the disperse system of spherical c----0 cells as a function of the frequency, where eta* is the complex viscosity in suspensions, eta the medium viscosity and c the volume concentration of the cells. The cell consists of a viscoelastic membrane and a viscoelastic cytoplasm. The viscoelasticity of the membrane is described by the Voigt model, while the viscoelasticity of the cytoplasmic region is described either by the Maxwell model or by the Voigt model. The interfacial tension is taken into account on both the interfaces of the membrane. The results of [eta*] are compared with the ones in the case in which the cytoplasmic region is purely viscous liquid.  相似文献   

16.
Summary A variant of the whole-cell patch clamp technique is described which allows measurement of whole-cell ionic currents in small cells while minimizing cell dialysis with the pipette solution. The technique involves the application of negative pressure to the inside of small (< 1 µm) tip diameter pipettes placed on the cell surface to achieve high resistance seals and membrane rupture. The technique has been used successfully in a variety of different types of cells to study membrane currents carried by Ca and K, currents generated by exchange carriers as well as electrical coupling between cells. Overall, the technique seems well suited for the study of ionic currents in small cells, and provides an alternative to conventional patch clamping techniques which necessitate intracellular dialysis.  相似文献   

17.
The endomembrane system of a cell is a highly dynamic, ephemeral structure that is difficult to visualize. Reconstructions from sections of fixed material can provide high-resolution information on intercellular membrane architecture, but such techniques are fraught with artifacts and are of little help in understanding the dynamics of intracellular membrane traffic. Recently, the availability of fluorescent membrane probes and the development of techniques for optically sectioning intact specimens have allowed glimpses of membrane dynamics to be visualized in living tissue. In this review we discuss the potential of a new optical sectioning technique, multiphoton imaging, for visualizing membrane dynamics in living cells. Multiphoton microscopy offers an unparalleled ability to obtain images from deep within specimens while minimizing the effects of phototoxicity.  相似文献   

18.
19.
Exponentially growing cells of Bacillus subtilis and Escherichia coli were Gram stained with potassium trichloro(eta 2-ethylene)platinum(II) (TPt) in place of the usual KI-I2 mordant. This electron-dense probe allowed the staining mechanism to be followed and compared with cellular perturbations throughout the staining process. A crystal violet (CV)-TPt chemical complex was formed within the cell substance and at the cell surface of B. subtilis when the dye and Pt mordant were added. The ethanol decolorization step dissolved the precipitate from the cell surface, but the internal complex was retained by the cell wall and remained within the cell. This was not the case for E. coli; the ethanol decolorization step removed both surface-bound and cellular CV-TPt. During its removal, the outer membrane was sloughed off the cells until only the murein sacculus and plasma membrane remained. We suspect that the plasma membrane was also perturbed, but that it was retained within the cell by the murein sacculus. Occasionally, small holes within the murein and plasma membrane could be distinguished through which leaked CV-TPt and some cellular debris. Biochemical identification of distinct envelope markers confirmed the accuracy of these images.  相似文献   

20.
The orientation of membrane fragments into a lamellar array by a flat surface is analyzed. This analysis includes processes such as centrifugation and drying and physical effects due to membrane fragment steric interactions, finite size, elasticity, and thermal fluctuations. Several model calculations of optimal orientational order in multilayer membrane arrays are presented. The predictions of a smectic A model agree quantitatively with the measured spatial dependence of the fluctuations in layer orientation in a multilamellar arrays. A new technique, based in part on this analysis, for the preparation of well-oriented multilamellar arrays of natural and artificial membranes, isopotential spin-dry centrifugation, is described. The method involves the use of specially designed inserts for the buckets of a standard vacuum ultracentrifuge. The membrane fragments to be oriented are sedimented from solution or suspension onto a substrate of a convenient material which forms a gravitational isopotential surface at high g. Sedimentation is accompanied by removal of the suspending medium at high g to produce oriented films with a selected degree of solvation. In addition, a method is described whereby small solute molecules can be maintained in constant concentration with the membrane fragments during this process. Initial application of the method to the orientation of purple membrane fragments is described. The degree of orientation obtained in this system is evaluated using freeze-fracture and scanning electron microscopy, optical birefringence, linear dichroism, and microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号